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Theme I: Rational Numbers 

 

Lesson 1: The Properties of Rational Numbers 
 

 

 

 

 

 

 

A set is a well – defined collection of objects.  An object which belongs to the collection 

is called an element or member of the set.    Example:  A =  {x, y, z};  z  is  an element  

of the set A. In mathematics, we frequently make use of the following important sets of 

numbers. 

 The set of natural numbers (or counting numbers) is 

    {1, 2, 3,…} 

We can represent the natural numbers on a number line with equally spaced dots 

beginning at 1 and continuing to the right forever. 

 
The set of whole numbers is the same as the set of natural numbers except it 

includes zero.  Thus, its members are         {0, 1, 2, 3,…} 
 

We can represent the whole numbers on a number line with equally spaced dots 

beginning at 0 and continuing to the right forever. 

0 1 2 3 4 5

 
 

The set of integers includes the whole numbers and their negatives.  Thus, its 

members are                   {…, -3, -2, -1, 0, 1, 2, 3,…} 
 

On the number line, the integers extend forever both to the left and to the right. 

-5 -4 -3 -2 -1 0 1 2 3 4 5

 
The set of rational numbers includes the integers and the fractions that can be 

made by dividing one integer by another, as long as we do not divide by zero.  (The word 

rational refers to a ratio of integers.)  In other words, rational numbers can be expressed 

in the form 

 
y

x
where x and y are integers and y   0 

 

(Recall that the symbol  means “is not equal to.”) 

1 2 3 4 5 

 

       Do You Know? 
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The Properties of Rational Numbers 
 

The Rational Number System 

 

This lesson explores the properties of the rational numbers.  Many properties will be 

familiar, since the integers have corresponding properties.  However, we will also 

discover some important new properties of rational numbers which have no counterpart 

in the integers.  This lesson also gives techniques for estimation and computation. It also 

gives examples of the application of rational numbers being used as solutions of practical 

problems that involves quantitative reasoning. 

 

Properties of Addition and Subtraction 

      

Negative or Additive Inverse 

 

Let 
b

a
 be a rational number.  Its negative, or additive inverse, written - 

b

a
, is the 

rational number 
b

a−
.  Example 

7

5
additive inverse is 

7

5−
 

 

 

Properties of Addition of Rational Numbers 

 

Let 
b

a
,  

d

c
, and 

f

e
   be rational numbers.  The following properties hold. 

 

 

         Closure Property           
b

a
 + 

d

c
  The sum of  two rational numbers. 

                                                                        Is a rational  number. 

 

         Commutative Property                    
b

a
 + 

d

c
   =    

d

c
 + 

b

a
 

           

         Associative Property             







+

d

c

b

a
+ 

f

e
 = 

b

a
+ 








+

f

e

d

c
 

 

         Zero (0) is the Additive Identity        
b

a
 + 0 = 

b

a
 

 

         Existence of Additive Inverses      
b

a
 + 








−

b

a
 = 0, where -

b

a
 = 

b

a−
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The Properties of Rational Numbers 
 

Formulas for Subtraction of rational Numbers 

 

 

Let 
b

a
 and  

d

c
 be rational numbers.  Then  

b

a
 - 

d

c
  =  

b

a
 +  








−

d

c
  =  

bd

bcad −
. 

 

 
 

Properties of Multiplication of Rational Numbers 

 

Let   
b

a
,  

d

c
, and 

f

e
 be rational numbers.  The following properties hold. 

Closure Property     
b

a
 · 

d

c
  the product of two rational number is a rational  number. 

 

Commutative Property   
b

a
 · 

d

c
  = 

d

c
 · 

b

a
  

 

Associative Property     








d

c

b

a
· 

f

e
 =  

b

a
· 










f

e

d

c
 

 

Distributive Property of Multiplication over Addition and Subtraction 

    
b

a
 ·   








+

f

e

d

c
 =  

b

a
 · 

d

c
  +  

b

a
 · 

f

e
     and        

b

a
 ·   








−

f

e

d

c
 =  

b

a
 · 

d

c
  -  

b

a
 · 

f

e
  

 

Multiplication by Zero    0  · 
b

a
  = 0  

One (1) is the Multiplicative Identity     1  · 
b

a
  =  

b

a
   

Existence of Multiplicative Inverse    If  
b

a
   0, then there is a unique rational 

numbers, namely  
a

b
, for which 

b

a
 · 

a

b
   =  1. 

 

Properties of the Order Relation on the Rational Numbers 

 

Let   
b

a
,  

d

c
, and 

f

e
 be rational numbers. 
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The Properties of Rational Numbers 
 

Transitive Property     

                           If    
b

a
< 

d

c
  and  

d

c
 < 

f

e
 , then   

b

a
 < 

f

e
  . 

 

 

Addition Property 

                          If   
b

a
< 

d

c
 , then   

b

a
 +  

f

e
  <  

d

c
 +  

f

e
. 

 

 

Multiplication Property 

                        If  
b

a
< 

d

c
  and  

f

e
  > 0,   then   

b

a
 ·  

f

e
 <   

d

c
 ·  

f

e
. 

                  

                        If  
b

a
< 

d

c
  and  

f

e
  < 0,   then   

b

a
 ·  

f

e
 >   

d

c
 ·  

f

e
 . 

 

Trichotomy Property  Only one of the following is true: 

 

                          
b

a
< 

d

c
  ,     

b

a
= 

d

c
 ,  or    

b

a
>

d

c
  . 

 

 

 

The Density Property of Rational Numbers 

 

Let  
b

a
 and  

d

c
  be any two rational numbers, with     

b

a
< 

d

c
.  Then there is a rational 

number 
f

e
 between  

b

a
 and 

d

c
;   that is,    

b

a
  <  

f

e
 < 

d

c
 . 
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The Properties of Rational Numbers 
 

Activity 1 

 

1.    Label these points on the number line 

 a)  
4

3
  b)   

8

7
−  c)   

18

12
  d)  -2   e)   

8

3
2  

 
 

 
2.   List the additive inverse of the fractions in Problem 1, for 

 a)    b)     c)     d)     e)    

 

3.   List the multiplicative inverses of the fractions in Problem 1, for 

 a)    b)     c)     d)     e)    

4.   Order the fractions in Problem 1 from the smallest to the largest. 

 
5.   Illustrate the Closure Property of Addition using the fractions in b) and c)                                                             

      (in Problem 1); give the final results as a single fraction. 

 
6.   Illustrate the Closure Property of Multiplication using the fractions in  a) and c)  

      (in Problem 1); give the final results as a single fraction. 

 
7.  Illustrate the Commutative Property of Addition using the fractions in b) and c) 

     (in Problem 1); give the final results as a single fraction on each side of the     

     equality sign.  

 
8.  Illustrate the Commutative Property of Multiplication using fractions in a) and c)    

     (in Problem 1); give the final results as a single fraction on each side of the      

     equality sign.  

 
9.   Illustrate the Associative Property of Addition using the fractions a),  b)  and c) 

      (in Problem 1); give the details in each step and give the results as a single fraction    

      on each side of the equality sign. 

 
10.  Illustrate the Distributive Property of Multiplication Over Addition using the   

       fractions  a),  b)  and c) (in Problem 1); give the details in each step and give the     

       final results as a single fraction on each side of the equality sign.  
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The Properties of Rational Numbers 

 
Activity 2 

 

 
1.   Discuss and illustrate the differences between natural numbers, whole numbers,   

      integers and rational numbers (fractions).  

 

 

 

 

 

2.   Discuss and illustrate the density of rational numbers; use the actual fractions   

      (numbers) and give several examples.  

 

 

 

 

 

 

3.   Discuss why you think that the additive identity, zero (0), and the multiplicative   

      identity, one (1) is important or is not important; illustrate several uses of both    

      zero (0) and one (1).  

 

 

 

 

 

 

4.   Discuss and illustrate  the transitive properties of rational numbers; give several   

      examples.  

 

 

 

 

 

 

5.   Discuss and illustrate the order of rational numbers when the same fraction is   

      added or multiplied to two fractions, one (1) fraction being less or greater than   

      the others. 
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Theme I: Rational Numbers 

 

Lesson 2: Rational Numbers and Arithmetic Operations 
 

 

 

 

 

 

 

 

Operations of Rationals 

 

1. The Basic Concepts of Fractions and Rational Numbers 

 

(a) A fraction is an ordered pair of integers a and b, b ≠ 0, written 
b

a
 

or a/b.  

 

(b) Two fractions that express the same quantity, or correspond to the 

same point on a number line, are called equivalent fractions. In 

particular 
b

a
= 

nb

na




 for all integers n, n ≠ 0 and 

b

a
 = 

db

da




 if d 

divides a and b (the fundamental law of fractions), and 
b

a
 = 

d

c
 if, 

and only if, ad = bc. 

(c) Any fraction is equivalent to a fraction in simplest form. Two or 

more fractions can always be replaced by equivalent fractions with 

a common denominator. 

(d) A rational number is a number represented by a common fraction 

b

a
. The same rational number can also be represented by any 

fraction equivalent to 
b

a
. 

(e) If two rational numbers are represented by 
b

a
and

d

c
, with b > 0 and 

d > 0, then 
b

a
 < 

d

c
if, and only if, ad < bc. 

 

 

 

 

 

 

 

       Do You Know? 
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Rational Numbers and Arithmetic Operations 

 

2. The Arithmetic of Rational Numbers 

     

(a) The sum of two rational numbers represented by fractions 
b

a
and 

b

c
 

with a common denominator is defined by 
b

a
 + 

b

c
 = 

b

ca +
. From 

this it follows that
b

a
 + 

d

c
= 

bd

bcad +
.  

(b) Subtraction is defined by the missing-addend approach: 
b

a
 − 

d

c
 = 

f

e
 if, and only if, 

b

a
 = 

d

c
 + 

f

e
. The subtraction formula 

b

a
 – 

d

c
 = 

bd

bcad −
 follows from the definition of subtraction.  

(c) Multiplication is defined by 
b

a
 • 

d

c
 = 

bd

ac
.  

(d) This definition is motivated by extending the rectangular array 

model of multiplication. 

(e) Division is defined by the missing-factor approach: 
b

a
  

d

c
 = 

f

e
 

if, and only if 
b

a
 = 

d

c
 • 

f

e
.  

(f) A nonzero rational number, 
b

a
, has a unique multiplicative inverse, 

the reciprocal 
a

b
, which when multiplied by 

b

a
 gives the product 1. 

That is, 
b

a
 • 

a

b
 = 1. 

 

3. The rational Number System 

    

(a) The rational numbers are closed  under addition. Addition is 

commutative, associative, and zero is the additive identity.  

(b) Each rational number, 
b

a
, has a unique negative, -

b

a
, given by 

b

a−
, which is the additive inverse of 

b

a
. Subtraction is equivalent 

to adding the negative , so 
b

a
 − 

d

b
 = 

b

a
 + (-

d

b
). 
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Rational Numbers and Arithmetic Operations 

 

(c) Multiplication is closed, commutative, associative, one is the 

multiplicative identity, and multiplication distributes over addition 

and subtraction. 

(d) Each nonzero rational number 
b

a
 has a unique multiplicative 

inverse given by the reciprocal 
a

b
. Division is equivalent to 

multiplication by the multiplicative inverse of the divisor, so 
b

a
 


d

c
 = 

b

a
 • 

c

d
.  

(e) The rational numbers have the density property; that is, there is a 

rational number between any two rational numbers.  

(f) Computational skills – estimations, mental arithmetic, paper and 

pencil and electronic calculations – are as useful and necessary for 

work with the rational numbers as for any other number system. 
 

 

Common Fractions 

 

Common fractions have the form 
b

a
 or a/b, where a and b can be any number as long as 

b is not zero. The number on top is called the numerator and the number on the bottom is 

called the denominator. A fraction represents division: 

 

    
b

a
    means  a    b 

 

We can write an integer as a fraction with a denominator of 1. For example:   

  
1

3
3 =  or  =− 4

1

4−
 

 
 

 

 

 

 

 

 

 

 

 

 

numerator – 

denominator - 
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Rational Numbers and Arithmetic Operations 

 

 

Simplest Form 

A fraction 
b

a
 is in simplest form if there is not a number c that divides both  a and b 

except 1. 
9

5
 is in simplest form. 

9

6
 is not  because 

9

6
 = 

33

32




 = 

3

2
 (which is in simplest 

form).  

 

 

 

 

 

 

 

Example  

              Solve 3
5

1
+ 5 

4

3
  =  








+

5

1
3 + 








+

4

3
5  

         =  







+

5

1

1

3

5

5
 + 








+

4

3

1

5

4

4
 

         =  +







+

5

1

5

15








+

4

3

1

20
 

         =  







+

4

23

5

16
 

         =  
5

16

20

20
 + 

4

23

20

20
  

         =  
20

115

20

64
+  

         =   
20

179
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Rational Numbers and Arithmetic Operations 

 
Adding and Subtracting Fractions 

 

If two fractions have a common  (same) denominator, we can add or subtract them by 

adding or subtracting their numerators. For example: 

 

 
5

3

5

21

5

2

5

1
=

+
=+               or               

9

5

9

27

9

2

9

7
=

−
=−  

 

Otherwise, we must write the fractions with a common denominator before adding or 

subtracting. For example, we can add 
3

1

2

1
+ by writing them with a common denominator 

of 6 as 
6

3
and 

6

2
, respectively: 

   
6

5

6

23

6

2

6

3

3

1

2

1
=

+
=+=+  

Multiplying Fractions 

 

To multiply fractions, we multiply the numerators and denominators separately. For 

example: 

   
15

2

53

21

5

2

3

1
=




=  

 

Sometimes we can simplify fractions at the same time we multiply them by canceling 

terms that occur in both the numerator and the denominator. For example: 

    

   
4

5

34

53

3

5

4

3
=




=  

 

Reciprocals and Division 

Two numbers are reciprocals if their product is 1. For example: 

   2 and 
2

1
are reciprocals because 2 1

2

1
=  

   
3

4
and 

4

3
are reciprocals because 1

4

3

3

4
=  

We find the reciprocal of any fraction y inverting it (interchanging the numerator and the 

denominator). For an integer like 2, we think of it as 
1

2
to find that its reciprocal is 

2

1
.  

 

 

 

 



 13 

 

Rational Numbers and Arithmetic Operations 
 

Activity 1 

 

 

*Given the fractions  a) 
8

3
   b)

4

1
5    c)

4

35
    d)

27

4−
    e)

12

5
2       f)

369

123
   g) 

3

1
 

 

 

1.  Which of the fractions in (*) is in simplest form? 

 

2.  Give at least one equivalent fraction in the form 
b

a
for each of the fractions in (*).  

 

3.  Add the fractions 
8

3

 
+  

4

1
5  + 

4

35
. 

 

 

4.  Multiply the fractions  
8

3


4

1
5 

4

35
. 

 

 

5.  Add the fractions (
4

1
5

 
+ 

12

5
2  ) ·

27

4−
.  

 

 

6.   Divide
369

123

 
 ÷  

3

1
, mentally. 

 

 

7.   Divide (
27

4−

 
+  

4

35
)  ÷ 

27

4−
. 

 

 

8.   Calculate 
4

1
5

 
+ 

12

5
2  and 

4

1
5

 
-  

12

5
2 .

 
 

 

9.   Calculate 
4

35

 
  

12

5
2 and  

4

35

 
÷ 

12

5
2

.
 

 

10.  Subtract ( 
4

35

 
- 

4

1
5  )   ÷  .

12

5
2
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Rational Numbers and Arithmetic Operations 

 
Activity 2 

 

 

What is the best approximate answer listed for each of these problems? 

 

1.   
25

13
6

99

1
3

48

1
2 ++  is approximately 

a)  11       b)   
2

1
11        c)   12        d)   12

4

1
      e) none of these  

 

2.   8 · 







+

15

7
3

2

1
2 is approximately 

a)  40       b)   44       c)   48        d)   56      e) none of these  

 

3.    11
40

21

10

9
  is approximately 

a)  20       b)   23       c)   26        d)   30      e) none of these  

 

4.   Describe how the following calculations can be performed efficiently with  

     “mental math” (no writing). 

 a)   
111

19
· 







 −
+

6

4

3

2
  b)   

6

5
· 

15

36
 

 

5.   Describe how the following calculations can be performed efficiently with  

     “mental math” (no writing). 

a)   
8

5
· 








−

5

1

5

9
  b)   

3

2
· 

4

3
·

5

4
·

6

5
 

 

 

  

 

 



 15 

Theme I: Rational Numbers 

 

Lesson 3: Counting With Factorials, Permutations, and Combinations 
 

 

                         
 

 

 

Factorials 

 

Products of the form 4 3 2 1 come up so frequently in counting problems that they 

have a special name. Whenever a positive integer n is multiplied by all the preceding 

positive integers, the result is called n factorial and is denoted n! (the exclamation mark 

is read as “factorial”). For example:  

 1! = 1 

 2! = 2 1 = 2 

 3! = 3   2   1 = 6 

 4! = 4   3   2   1 = 24 

 5! = 5   4   3   2   1 = 120 

 

In general, 

 n! = n   (n - 1)   (n - 2)  · · ·   2   1 

 

Note that n! grows rapidly with n. For example 20!   2.4   1018,  40!   8.2   1047, and 

60!   8.3 1081. In fact, factorials quickly become so large that many calculators cannot 

handle them above n = 69 (if the calculator limit is 10100).  

Note also that, by definition, 0! = 1. 

 

Example  Calculate each of the following without using the factorial key on you 

calculator. 

 

a.  
!4

!6
   

   

Solution 

a. We can write out the entire calculation, but it is easier if we simplify it by 

canceling like terms in the numerator and denominator: 

 

!4

!6
 =  

1234

1  2  3  4  5    6




 = 

!4

!456 

 
 

 

 = 6   5 = 30 

 

  

  
 

 

       Do You Know? 
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Counting With Factorials, Permutations, and Combinations 
 

Permutations 

 

Mathematically, we are dealing with permutations whenever all selections come from a 

single group of items, no item may be selected more than once and the order of 

arrangement matter (for example, ABCD is considered different from DCBA). The total 

number of permutations possible with a group of N items is n!, where n! = n * (n-1) 

*…*2*1 is read “n factorial.” 

 

The Permutations Formula 

 

Permutations have their own special notation: We read 10P4 as “the number of 

permutations of ten items selected four at a time.’ Using this compact notation, we have  

   

  10P4 = 
)!410(

!10

−
 = 5040 

 

Generalizing, we have a formula for calculating the number of permutations.  

 

If we make r selections from a group of n items, the number of permutations is  

  nPr = 
)!(

!

rn

n

−
 = 

  
rerfactorshe

rnnnn )1()2()1( +−−−  

where nPr  is read as “the number of permutations of n items taken r at a time.” That is, 

there are 60 possible permutations when we choose three people from a group of five.  

 

However, because order matters for permutations but does not matter for committees, the 

number of permutations is an overcount of the actual number of different committees. 

More specifically, any three-person committee can be listed in 3! = 3 2 1 = 6 different 

orders. For example, the committee consisting of Zeke, Yolanda, and Wendy has six (6) 

different permutations: 

 ZYW  ZWY  YZW  YWZ  WZY  WYZ 

Because each three-person committee is counted 3! = 6 times by the permutations 

formula, this formula gives us six times the actual number of committees. Thus, we must 

divide the number of permutations by 3! to find the number of committees: 

  

!3

35 P
 = 

!3

60
 = 

123

60


 = 10 

 

This is the same result we obtained by listing the three-person committees. The 

permutations part of the equations is nPr, where n = 5 and r = 3. We then divided this term 

by r! = 3! to correct for overcounting. Thus, the general formula for combinations is the 

permutations formula divided the r!. 
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Counting With Factorials, Permutations, and Combinations 
 

Combinations  

 

Combinations occur whenever all selections come from a single group of items, no item 

may be selected more than once, and the order of arrangement does not matter (for 

example, ABCD is considered to be the same as DCBA). If we make r selections from a 

group of n items, the number of possible combinations is  

  

 nCr = 
!r

Prn = 
!)!(

!

rrn

n

−
 

where nCr  is read as “the number of combinations of n items taken r at a time.” 

 

 

Example   Suppose that you select three (3) different flavors of ice cream in a shop that 

carries twelve (12) flavors. How many flavor combinations are possible? 

 

Solution    We are looking for the number of combinations of n = 12 flavors selected  

r = 3 at a time. From the combinations formula, the number of flavor combinations is  

 

 12C3 = 
!3)!312(

!12

−
 = 

!3!9

!12


 = 

!3!9

!9101112




 = 

123

101112




 = 

6

1320
 = 220 

 

There are 220 different three-flavor combinations possible from the 12 flavors. 
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Counting With Factorials, Permutations, and Combinations 

 

Activity 1 
 
 

1.   What number is 6! 

 

 

2.   What is 
!22

!25
 

 

 

3.   What is 
!199

!200
 

 

 

4.   List all permutations of {w, x, y, z} 

 

 

Let  s = {1, 2, 3, 4, 5} 

 

5.   List all the 3-permutations of s. 

 

 

6.   List all the 3-combinations of s.  

 

 

7.   Find the value of  

 

a)   P(6, 3)  b)   P(8, 5) 

 

8.  Find the value of  

 

 a)   C(8, 4)  b)   C(12, 6) 

 

9.   What relationship exists, if any between P(4, 3) and C(4, 3)? 

      (Hint: first calculate each)  

 

 

10.  Which of the following are the same? 

 

 a)   0!  b)   1!  c)   
!6

!6
  d)   P(6, 6)   e)   C(6, 6) 
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Counting With Factorials, Permutations, and Combinations 

 

Activity 2 

 

 
1.   A middle school principal needs to schedule six different classes-Algebra, English,  

      History, Spanish, Science, and Gym- in six different time periods. How many    

      different class schedules are possible? 

 

 

 

2.   A city has 12 candidates running for three leadership positions. The top vote-getter   

      will become  the mayor, the second vote-getter will become the deputy mayor, and     

      the third vote-getter will become the treasurer. How many outcomes are possible for    

      the three leadership positions? 

 

 

 

3.   Suppose that there are eight runners in a race. The winner receives a gold medal, the   

      second-place finisher receives a silver medal, and the third-place finisher receives a 

bronze medal. How many different ways are there to award these medals, if all 

possible outcomes of the race can occur? 

 

 

 

4.   Let s = {a, b, c, d, e, f} 

 

 How many subsets of s exist that contain                               (Hint: combinations) 

 

 a)   no element?     

 b)   exactly one (1) element 

 c)   exactly two (2) elements 

 d)   exactly three (3) elements 

 e)   exactly four (4) elements 

 f)    exactly five (5) elements 

 g)   exactly six (6) elements 

 h)   at least four (4) elements 

 

 

 

5.   List and discuss two major difference between permutations and combinations. 
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Theme I: Rational Numbers 

 

Lesson 4: Sequences and Summations 

 

 

 

 

 

 

 

 

Sequences are used to represent ordered lists of elements. Sequences are used in discrete 

mathematics in many ways. Sequences can be used to represent solutions to certain 

counting problems. This lesson will present the notation used to represent sequences and 

sums of terms of sequences. When the elements of an infinite set can be listed, in some 

systematic way, the set is called countable. We will conclude this lesson with a 

discussion of both countable and uncountable sets.  

 

A sequence is a mathematical structure used to represent an ordered list. A sequence is a 

list of items that can be arranged in a 1-1 correspondence with a subset of the positive 

integers or whole numbers (usually either the set {0, 1, 2, …} or the set {1, 2, 3, ….}) to 

a set S. We use the notation an to denote the nth term of the sequence. We call an a term of 

the sequence.  

 

We use the notation {an} to describe the entire sequence. Observe that an represents an 

individual term of the sequence {an}. Also, observe that the notation {an}for a sequence 

is not the usual notation for a set. However, the context in which we use this notation will 

always make it clear when we are discussing sets and when we are discussing sequences. 

We describe sequences by listing the terms of the sequence in order of increasing 

subscripts.  

 

EXAMPLE 1  Consider the sequence  = {an}, where  

    an  = 1/n. 

   The list of the terms of this sequence, beginning with a1, namely, 

    a1, a2, a3, a4, …., 

   starts with  

    1,
2

1
 , 

3

1
 , 

4

1
 , ….,   

EXAMPLE 2  Sequences of the form  

    a1, a2, …, an, 

are often used in mathematics. These finite sequences are also 

called strings. This string is also denoted by a1 a2 …an. The length 

of the string S is the number of terms in this string. The empty 

string is the string that has no terms. The empty string has length 

zero.  

 

 

       Do You Know? 
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Sequences and Summations 

 
EXAMPLE 3  The string abcd is a string of length four.  

 

Special Integers Sequences 

 

A common problem in quantitative mathematics is finding a formula or a general rule for 

constructing the terms of a sequence. Even though the initial terms of a sequence do not 

determine the entire sequence, they can usually help us find how to identify the nth term 

of the sequence or how to identify all terms of the sequence.  

 

    1      2       3       4       5 6       7       8       9      10     11     12 

  

 

 

 

 

   1 3       5       7       9 11    13      15    17      19    21     23 

A One-to-One Correspondence Between N and the Set of Odd Positive Integers.  

 

 

An infinite set is countable if and only if it is possible to list the elements of the set in a 

one-to-one correspondence from the set of natural numbers to a set S. This can be 

expressed in terms of a sequence a1, a2, …, an, …. For instance, the set of odd integers 

can be listed in a sequence a1, a2, …, an, …., where an = 2n – 1 (see the graph/figure on 

this page).  

 

Cardinality 

 

We define the cardinality of a finite set to be the number of elements in the set. It is 

possible to extend the concept of cardinality to all sets, both finite and infinite, with the 

following definition.  

 

Definition  The sets A and B have the same cardinality if and only if there is a one-to-

one correspondence from A to B. 

 

We will now classify infinite sets into two groups, those with the same cardinality as the 

set of natural numbers and those with different cardinalty. 

 

Definition  A set that is either finite of has the same cardinality as the set of natural 

numbers is called countable. A set that is not countable is called uncountable.  

 

We now give examples of countable and uncountable sets.  

 

Example   We have shown that the set of odd positive integers is a countable set. The set 

of all fractions between 0 and 1 can be shown to be uncountable.  
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Sequences and Summations 
 

Summation 

Here we introduce the summation symbol  (the Greek letter sigma). Consider a 

sequence a1, a2, a3….. Then the sums 

  a1 + a2….+ an  and   am + am+1 +….+an 

will be denoted, respectively by 

  
=

n

j

ja
1

  and  
=

n

mj

ja  

*The letter j is called a dummy index or a dummy variable. 
 

Example   What is the value of  =

5

1

2

j
j  

 

Solution   We have   =

5

1

2

j
j   = 12 + 22 + 32 + 42 + 52 

     = 1 + 4 + 9 + 16 + 25 

     = 55 

 

Some special properties of sequences and summations  

• Arithmetic Sequence   Any sequence in which any two (2) consecutive terms 

have the same common difference (d) is called an arithmetic sequence.  

Example   In the sequence {1, 4, 7, 10, 13, …} every two terms have a common 

difference, d = 3.   

 
• Geometric Sequence   Any sequence where any two (2) consecutive terms have a 

common ratio (r) is called a geometric sequence.  

Example   In the sequence {3, 6, 12, 24, 48, …} note that  

                2
3

6
= ,     2

6

12
= ,      2

12

24
= ,     2

24

48
=  

 
• Recursive Sequences   When a sequence is defined by an initial condition and a 

recurrence relation, we call this type of sequence a recursive sequence.  

Example   a)   a1 = 1 

                b)   an = an-1 + 3, for n 2  

            The sequence is {1, 4, 7, 10, 13, 16, …} 

 
• Double Summations   Some summations involve two or more summation 

symbols.  

Example    


= =

4

1

3

1i j

ij   =  
=

++
4

1

)32(
i

iii  =  
=

=+++=
4

1

6024181226
i

i  
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Sequences and Summations 
 

Activity 1 
 

*Write down the first five terms of the sequence whose general terms is given by an . 

1.   a)   an = 5-2n   b)    an = n2 + n 

2.    a)   an = 4 · 3n      b)   an  = 
1+n

n
 

*Find the formula for the general term an of the sequence whose first five terms are: 

3.  a)   1, 5, 9, 13, 17, …   b)   72, 36, 18, 9, 
2

9
, … 

 

4.    a)   0, 3, 8, 15, 24, …   b)   -1, -2, -3, -4, -5, …  

 

5.   Determine which of the following sequences is an arithmetic sequence; 

      if it is an arithmetic sequence, what is d? 

 

 a)   3, 8, 13, 18, 23, …  b)  2, 3, 5, 8, 12, … 

 c)   10, 9, 8, 7, 6, …   d)   7, 1, -5, -11, -17, … 

 

6.   Determine which of the following sequences is a geometric sequences;  

      if it is what is r? 
 

 a)   3, 2, 
3

4
, 

9

8
, 

27

16
, …  b)  1, 

2

1
, 

3

1
, 

4

1
,
5

1
, … 

 c)   2, -2, 2, -2, 2, …   d)   1, 4, 9, 16, 25, … 

 

7.  Define the following sequences, recursively  

a)   3, 6, 12 , 24, 48, …  b)  1, 
2

1
, 

3

1
, 

4

1
,
5

1
, … 

 c)   2, -2, 2, -2, 2, …   d)   1, 4, 9, 16, 25, … 

 

8.   What are the values of the following sums?  

 a)   
=

+
5

1

)1(
k

k     b)   
=

−
4

0

)2(
j

j 

 

9.   Find the value of each of the following sums. 
 

a)   
=

−+
8

0

)1(1(
j

j)   b)   
=

8

0

3(
j

j – 2j) 

10.   Make up arithmetic and geometric sequences, then find the sum of the first five (5)  

        terms.  
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Sequences and Summations 
 

Activity 2 
 

1.   A school auditorium has 12 seats in the front row, 13 seats in the second row, 14 seats  

      in the third row, and so on. If there are 30 rows in the auditorium, how many seats are  

      in the last row?  

 

 

2.   Suppose a sequence has first term 2 and third term 18.  

 

 a)   If the sequence is arithmetic, find the common difference d, and list the first   

                  five term of the sequence.  

 

 b)   If the sequence is geometrid, find two possible values for the common ratio r,    

                  and list the first five term of the geometric sequence in each case.  

 

3.   Describe the pattern of the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,… and  

       define it recursively.  

 

4.   Find the value of the following sum 

   
=

−+
8

0

)1(1(
j

j) 

 

5.   Compute the following double sum 

 
= =

−
3

1

2

1

)(
i i

ji  
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Theme 1: Rational Numbers 

 

Lesson 5: Binomials, Pascal Triangles, and the Binomial Theorem  

 
 

 

 
 

 

  

Binomial Expressions 

 

Consider (x+y)3. The expression in parentheses has two terms and so is known as 

binomial expression. Let us investigate what happens when we expand powers of a 

binomial expression. For the first example, recall that any quantity (other than 0 itself) 

raised to the power 0 is defined to be equal to 1.  

                                        (x + y)0 = 1 

                                        (x + y)1 = x + y = 1· x + 1·y 

                                        (x + y)2 = x2 + 2xy+ y2= 1 · x2 + 2 · xy + 1 · y2 

                                                            (x + y)3 = x3 + 3x2y+ 3x y2 + y3 = 1 · x3 + 3 · x2y + 3 · xy2+ 1 · y3 

What patterns do notice in the coefficients? 

 
Figure A 

Pascal’s Triangle 

 

                                                           1 

                                                      1          1 

                                               1          2          1   

                                          1          3          3          1   

                                    1         4          6          4          1     

                              1          5        10         10         5         1 

                         1        6         15        20         15         6          1 

                   1        7         21        35         35         21         7         1    

             1        8         28       56         70         56          28        8        1    

        1        9        36        84       126       126         84        36        9        1 

1       10      45      120       210      252        210       120       45     10       1 

 

The array is named after the French mathematician Blaise Pascal (1623-1662) who 

showed that these numbers play an important role in mathematics. However, the triangle 

was certainly known in China as early as the twelfth century. Pascal’s triangle is rich with 

remarkable patterns and is also extremely useful. Before discussing the patterns, we 

observe that it is customary to call the single 1 at the top of the triangle the 0th row (since, 

for example, in the path counting problem discussed above, this 1 would represent a path 

length 0). 

 

 

       Do You Know? 
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Binomials, Pascal Triangles, and the Binomial Theorem 

 

For consistency, we will also call the initial 1in any row the 0th element in the row, and 

the initial diagonal of 1s the 0th diagonal. Thus, 1 is the zeroth element in the fourth row, 

4 is the first element, 6 the second element, and so on.  
 

Figure B:  Numbered rows and diagonals in Pascal’s Triangle 

 

 

                                                    1 

                                               1        1 

                                          1        2       1   

                                      1       3        3       1   

                                  1      4        6        4       1     

                              1      5      10      10      5      1 

                         1      6      15      20      15     6      1 

 
Observe that: 

For (x + y)0 , the coefficient is 1 

For (x + y)1 , the coefficients are                                                              1    1 

For (x + y)2 , the coefficients are                                                           1    2     1 

For (x + y)3 , the coefficients are                                                       1     3     3     1  

 
Numbers in Pascal’s Triangle 

 

Because of this connection with the coefficients in binomial expansions, the combination 

numbers C(n, r), that, as you remember, are the same numbers found in Pascal’s 

Triangle, are also known as the binomial coefficients.  

 

What in the world is the connection between combination numbers, which tell us the 

number of subsets of a certain size, and the coefficients we get when we expand a 

binomial expression? Perhaps we can gain some insight by looking more closely at 

exactly how we obtain those coefficients.  

 

When we expand (x + y)2
 using the distributive property, we obtain  

                           (x + y)2 = (x + y) (x + y) = xx + x y +  yx +  yy = x2 + 2 x y+ y2 .  

 

If we want a term with one x and one y, for example, we can choose the x from the (x + y) 

factor on the left, which gives xy, or from the  (x + y) factor on the right, which gives  yx. 

Once we choose where the x term comes from, we have only one choice for where the y 

term comes from. Thus the total number of ways to get a term with one x and one y is 

C(2, 1)·1=2·1=2, so 2 is the coefficient of the xy term in the simplified form.  

 

0th row 

3rd row 
2nd row 

1st row 

0th diagonal 

3rd  diagonal 

2nd  diagonal 

1st  diagonal 
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Binomials, Pascal Triangles, and the Binomial Theorem 

 
Let’s try it with the third power. 

                                          (x + y)3 = (x + y)(x + y)(x + y) 

                                                      = (xx + xy + yx  + yy)(x + y) 

                                                      =  xxx + xxy + xyx  + xyy + yxx + yxy + yyx  + yyy 

                                                      =  x3 + 3x2y+ 3xy2 + y3                      

                                                     

To get an x2 y term, we must choose an x from two of the three factors of (x + y) and a y 

from the remaining factor. If we choose x from the first two factors we get xxy, whereas 

choosing x from the first and third factors yields xyx, and choosing x from the last two 

factors gives yxx. As before, once we choose where the x’s come from, we have only one 

choice for where the y comes from. Thus, there are C(3, 2)·1 = 3·1= 3 terms with two 

factors of x and one factor of y, and 3 is the coefficient of x2 y. 

 

From these examples, we can generalize this pattern for any non-negative integer power 

of a binomial expression, to obtain the following theorem. Before stating the theorem, we 

should point out that in each term of the binomial expansion, the sum of the powers of x 

and y is equal to the power of the binomial. For example, in the term x2 y, the power of x 

is 2, the power of y is 1, and 2 + 1 = 3, which is the power of (x + y) in this example. In 

general, if r is the power of x in a term of the expansion of (x + y)n, then the power of y in 

that term must be n – r.  

 

Theorem 1   The coefficient of xr yn-r in the expansion of (x + y)n  is C(n, r) or more 

generally.  

 

Binomial Theorem 

 

Let x and y be variables, and let n be a positive integer. Then  

                      (x + y)n   =   
=

n

j

jnC
0

),( xn- j y j  

                                     = 








0

n
 xn + 









1

n
 x n-1 y + 









2

n
 x n-2 y2 + ··· + 









−1n

n
xy n-1 + 









n

n
yn . 

 
What is the expansion of (x + y)4

 ? 

 

Solution: From the binomial theorem it follows that 

                     (x + y)4  =  
=

4

0

),4(
j

jC x 4 - j y j   

                                  =  C(4, 0)x4 + C(4, 1) x3 y + C(4, 2) x2y2 + C(4, 3)xy3 + C(4,4)y4 

                          =  x4 + 4x3 y+ 6x2y2 + 4xy3 + y4 .                    
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Binomials, Pascal Triangles, and the Binomial Theorem 

 

Activity 1 

 

 
*In the expansion of (x + y)10 what is the coefficient of  

 

1.     a)  x9y              b)   xy9 

 

 

2.     a)  x6y4             b)   x4y6 

 

 

3.     a)  x3y7             b)   x7y3 

 

 

4.     a)  x5y5             b)  x2y8 

 

 

5.    Expand (a –b)4 completely 

 

 

6.    Expand (x -2)5 completely 

 

 

7.   Expand (35 – 2t)3 completely  

 

 

8.   Find the coefficient of   x4y4 in the binomial expansion of (x + 3y)9. 

 

 

9.   In what rows of the Pascal Triangle does one find a given number appearing    

      only once?   

 

 

10.  What patterns do you see regarding the numbers in the diagonals from the outer and 

inner right and the corresponding diagonals from the outer and inner left.  
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Binomials, Pascal Triangles, and the Binomial Theorem 

 

Activity 2 

 
1.  Find a pattern in the Row of Sums of Pascal’s Triangle 

 

(a)      Compute the sum of the elements in each of rows zero through four of    

           Pascal’s triangle. 

  

(b)       Look for a pattern in the results of part (a) and guess a general rule. 

 

(c)       Use Figure A to check your guess for rows five through eight. 

 

(d)       Give a convincing argument that your guess in part (b) is correct.  

 

2.    Let S be a set with 8 elements. Use Pascal’s Triangle to answer the following    

       Questions. 

 

            a)   How many subsets of S have exactly 2 elements? 

 

            b)   How many subsets of S have exactly 3 elements? 

 

            c)   How many subsets of S have exactly 4 elements? 

 

            d)   How many subsets of S have exactly 5 elements? 

   

            e)   How many subsets of S are there altogether? 

 

3.   There are ten (10) books on Abdou’s reading list. Over the summer, he must read four   

      (4) of them. In how many ways can he choose four (4) books to read? 

 

4.   Study the Pascal Triangle. Do you see any pattern in some of the triangle numbers   

      (the numbers that form sub-triangles): 

 

                •                  •                 •                    •            

                             •     •           •    •               •   •   

                                            •     •    •         •    •    • 

                                                                     •    •    •     •   

              A              B                 C                   D 
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Real Numbers: Decimals and Percents 
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Theme II: Real Numbers: Decimals and Percents 

 

Lesson 1: Real Numbers and Inequalities 
 

 

 

 
 

 

 

 

Real Numbers  

 

When expressed in decimal form, rational numbers are either terminating decimals with a 

finite number of digits (such as 0.25, which is 
4

1
) or repeating decimals in which a 

pattern repeats over rand over (such as 0.333…, which is 
3

1
). 

Irrational numbers are numbers that cannot be expressed in the form x/y.  when written 

as decimals, irrational numbers neither terminate nor have repeating pattern.  For 

example, the number 2  is irrational because it cannot be expressed exactly in a form 

x/y ; as a decimal, we can write it as 1.414213565…, where the dots mean that the digits 

continue forever with no pattern.  The number π is also an irrational number, which as a 

decimal is written 3.14159265…. 

 The set of real numbers consists of both rational and irrational numbers ; hence it 

is represented by the entire number line.  Each point on the number line has a 

corresponding real number, and each real number has a corresponding point on the 

number line.  In other words, the real numbers are the integers and  “everything in 

between.”  A few selected real numbers are shown on the number line which is presented. 

 

Examples : 

 

• The number 25 is a natural number, which means it is also a whole number, an 

integer, a rational number, and a real number. 

• The number -6 is an integer, which means it is also a rational number and a real 

number. 

• The number 
3

2
 is a rational number, which means it is also a real number. 

• The number 7.98418…is an irrational number ; the dots indicate that the digits 

continue forever with no particular pattern.  It is also a real number. 

 

 

 

       Do You Know? 
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Real Numbers and Inequalities 

 
The Real Line and Inequalities 

 

The set of real numbers, denoted by R, plays a dominant role in mathematics.  We 

assume the reader is familiar with the geometric representation of R by means of the 

points on a straight line.  As shown below, a point, called the origin, is chosen to 

represent) and another point, usually to the right of 0, to represent 1.  Then there is a 

natural way to pair off the points on the line and the real numbers, i.e. each point will 

represent a unique real number and each real number will be represented by a unique 

point.  For this reason we refer to R as the real line and use the words point and number 

interchangeably. 

 

-4 -3 -2 -1 0 1 2 3 4

 
 

 

POSITIVE NUMBERS  

 

Those numbers to the right of 0 on the real line R, i.e. on the same side as 1, are the 

positive numbers; those numbers to the left of 0 are the negative numbers.  The set of 

positive numbers can be completely described by the following axioms: 

 

[[P1] If a R, then exactly one of the following is true:  a is positive; a = 0; -a is  

                        positive. 

[P2]  If a, b R are positive, then their sum a + b and their product a · b are also 

positive. 

It follows that a is positive if and only if –a is negative.  

 

Example: We show, using only [P1] and [P2], that the real number 1 is positive. 

   By [P1], either 1 or -1 is positive.  If -1 is positive then, by  [P2], 

the product (-1) (-1) = 1 is positive.  But this contradicts [P1] which states that 1 and -1 

cannot both be positive.  Hence the assumption that -1 is false and so 1 is positive. 

 

Example: The real number -2 is negative.  For, by the preceding example, 1 is 

positive and so, by  [P2], the sum 1 + 1 = 2 is positive; hence -2 is not positive, i.e. -2 is 

negative. 

 

-π - 5  

 

2  

 

π 
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Real Numbers and Inequalities 

 

ORDER 

 

An order relation in R is defined using the concept of positiveness. 

 

Definition:  The real number a is less than the real number b, written a < b, if the 

difference b – a is positive. 

 

The following notation is also used: 

 a > b, read a is greater than b,  means b < a 

 a b, read a is less than or equal to b, means a < b or a = b 

 a b, read a is greater than or equal to b, means b  a 

 

Geometrically speaking,  

 a < b means a is to the left of b on the real line R 

 a > b means a is to the right of b on the real line R 

 

Examples: 2 < 5,  -6  -3,  4 4, 5 > -8 

 

Example: A real number x is positive if x > 0, and x is negative if x < 0.  For x  0, 

x2 is always greater than 0:  x2 > 0. 

 

Example:  The notation 2 < x < 5 means 2 < x and also x < 5; hence x will lie 

between 2 and 5 on the real line. 

 

We refer to the relations <, >,   and   as inequalities in order to distinguish them from 

the equality relation =.  We also shall refer to < and > as strict inequalities.  We now state 

basic properties about inequalities which shall be used throughout. 

 

Theorem A: Let a, b and c be real numbers. 

 

(i) The sense of an inequality is not changed if the same real number is 

added to both sides: 

   If a < b, then a + c < b + c. 

   If a   b, then a + c  b + c. 

 

(ii) The sense of an inequality is not changed if both sides are multiplied 

by the same positive real number: 

   If a < b and  c > 0,   then ac < bc. 

   If a   b and c > 0, then ac   bc. 

 

(iii) The sense of an inequality is reversed if both sides are multiplied by 

the same negative number: 

   If a < b and  c < 0,   then ac > bc. 

   If a b and c < 0, then ac   bc. 
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Real Numbers and Inequalities 

 
(FINITE) INTERVALS 

 

Let a and b be real numbers such that a < b.  Then the set of all real numbers x satisfying 

 

 A < x < b  is called the open interval from a to b 

 A   x   b  is called the closed interval from a to b 

 A < x   b  is called the open-closed interval from a to b 

 A   x < b  is called the closed-open interval from a to b 

 

The points a and b are called the end points of the interval.  Observe that a closed 

interval contains both its endpoints, an open interval contains neither endpoint, and an 

open-closed and a closed-open interval contains exactly one of its endpoints: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The open-closed and closed-open intervals are also referred to as being half-open (or: 

half-closed). 

 

INFINITE INTERVALS 

 

Le a be any real number.  Then the set of all real numbers x satisfying x < a, x   a, x > a 

or x   a is called and infinite interval. 

 

 

 

 

 

 

 

Open interval:  a < x < b closed interval:  a   x   b 

Open-closed interval:  a < x   b Closed-open interval:  a   x < b 

x < a x   a x > a x   a 

a b a b 

a b a b 

a a a a 
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Real Numbers and Inequalities 
 

 

LINEAR INEQUALITIES IN ONE UNKNOWN 

 

Every linear inequality in one unknown x can be reduced to the form 

  ax < b,  ax   b,   ax > b   or ax b 

 

If a  0, then both sides of the inequality can be multiplied by 1/a with the sense of the 

inequality reversed if a is negative.  Thus the inequality can be further reduced to the 

form 

  x < c.  x  c, x > c  or x  c 

 

Whose solution set is an infinite interval. 

 

Example: Consider the inequality  5x + 7 2x + 1.  Adding -2x – 7 to both sides (or:  

  transposing), we obtain 

  5x – 2x   1 – 7  or 3x   -6 

  Multiplying both sides by 
3

1
 (or dividing both sides by 3) we finally 

  obtain 

 

  x   -2     

 

Example:  Consider the inequality 2x + 3 < 4x + 9.  Transposing, we obtain 

  2x – 4x < 9 – 3  or   – 2x < 6 

 

  Multiplying both sides of the inequality by -
2

1
 (or:  dividing both sides by  

  -2) and reversing the inequality since -
2

1
 is negative, we finally obtain 

  x > -3 

 

ABSOLUTE VALUE 

 

The absolute value of a real number x, written x , is defined by 

 

  x   =  








−



0

0

xifx

xifx

 

That is, if x is non-negative then x  = x, and if x is negative then x  = -x.  Thus the 

absolute value of every real number is non-negative:  x  0 for every x   R. 

 



 36 

Real Numbers and Inequalities 

 
 

Geometrically speaking, the absolute value of x is the distance between the pont x on the 

real line and the origin, i.e. the point 0.  Furthermore, the distance between any two 

points a, b   R  is ba −  = ab − . 

 

Example:  2−  = 2, 7  = 7, |-π | = π,  2−  = 2  

Example:  83−  = 5−  = 5  and  38−  = 5  = 5 

Example:  The statement x  , 5 can be interpreted to mean that the distance between x 

and the origin is less than 5; hence x must lie between -5 and 5 on the real line.  In other 

words, 

 

  x  < 5 and   -5 < x < 5 

 

    Have identical meaning and, similarly, 

  x  5  and   -5   x   5 

 

 Have identical meaning. 

 

The central facts about the absolute value are the following: 

 

Theorem B:  Let a and b be any real numbers.  Then: 

 

  (i)    a    0, and  a  = 0  if  a = 0 

  (ii)    - a   a  a   

  (iii)  ab  = a · b  

  (iv)   ba +    a  + b  

  (v)     ba +    a  - b  
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Real Numbers and Inequalities 
 

Activity 1 
 

1. List six (6) different real numbers; three (3) rationals and three (3) irrationals. 

 

Write each statement using inequality notations : 

 

2. a.  a is less than b.   b.  a is greater than b. 

 

3. c.  a is not greater than b.  d.  a is not less than b 

 

4. e.  a is less than or equal to b f.   a is not greater than or equal to b 

 

Rewrite the following geometic relationships between the given real numbers 

using the inequality notation: 

 

5. a.  y lies to the right of 8  b.  x lies between -3 and 7 

 

6. c.  z lies to the left of -3  d.  w lies between 5 and 1 

 

Describe and diagram each of the following intervals: 

 

7. a.  2 < x < 4  b.  -1   x   2  c.  x > -1 

 

8. d.  -3 < x   1 e.  -4   x < -1  f.  x   

 

Absolute Value 

 

Evaluate: 

9. a.  53−   b.  53+−    c.  73−  - 5−  

 

Rewrite without the absolute value sign: 

10. a.  x    3  b.  2−x  < 5   c.  32 −x    7 

 

 

 

 

 

 

 

 

  
  



 38 

Real Numbers and Inequalities 
 

Activity 2 

 
Solve each inequality 

1. a.  3 < 2x – 5 < 7   b.  -7   -2x + 3   5 

 

Absolute Value 

 

Evaluate: 

2. a.  53−      b.  53+−       c.  53−−    d.  73−  - 5−  

 

3. Solve:   
2

1
x + 

3

2−x
 < 2x - 

12

1
 

 

Solve each inequality and diagram its solution set: 

4. a.  3x – 1   4x + 2 

 b.  x – 3 > 1 + 3x 

 c.  2x – 3   5x – 9 

 

Rewrite without the absolute value sign: 

5. a.  x  3  b.  2−x  < 5   c.  32 −x    7 

 

 

 

 

 

 

 
  



Theme II: Real Numbers: Decimals and Percents 

 

Lesson 2: Powers of Ten (10) and Computation with Decimals  
                                                                                  

                                                                                               

  

  
 

 

 

 

 Powers of 10 indicate how many times to multiply 10 by itself. For example: 

 102 = 10   10 = 100  

 106 = 10   10   10   10   10   10 = 1,000,000 

Negative powers indicate reciprocals of corresponding positive powers. For example: 

 10-2 = 
210

1
 = 

100

1
 = 0.01 

 10-6 = 
610

1
= 

000,000,1

1
 = 0.000001 

Thus, powers of 10 follow two basic rules: 

 1.   A positive exponent tells how many 0s follow the 1. For example, 100 is a 1  

                  followed by no 0s; 108 is a 1 followed by eight 0s.  

 2.  A negative exponent tells how many places are to the right of the decimal 

point, including the 1. For example, 10-1 = 0.1 has one place to the right of the decimal 

point; 10-6 = 0.000001 has six places to the right of the decimal point.  

 

Multiplying and Dividing Powers of 10   Multiplying powers of 10 simply requires 

adding exponents 10n   10m = 10n+m 

Examples: A.       104   107 = 10,000   10,000,000 

                1011 = 100,000,000,000 

        B.      105   10-3 = 100,000   0.001  

                  102 = 100 

        C.   10-8   10-5 = 0.00000001   0.00001 

              10-13 = 0.0000000000001 

39 

 

       Do You Know? 
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Powers of Ten (10) and Computation with Decimals 

Dividing powers of 10 requires subtracting exponents. mn

m

n
−= 10

10

10
For example:   

Examples: C.   
3

5

10

10
 = 100,000   1000 = 100 = 102 

      D.   
7

3

10

10
 = 1000   10,000,000 = 0.0001 = 10-4 

                   E.     
610

10
4

−

−

 = 0.0001     0.000001 = 102 

 

Powers of Powers of 10 

We can use the multiplication and division rules to raise powers of 10 to other powers. 

For Example:   

                     F.    (104)3 = 104   104   104 = 104+4+4 = 1012 

 

Adding and Subtracting Powers of 10   There is no shortcut for adding or subtracting 

powers of 10, as there is for multiplication and division. The values must be written in 

longhand notation. 

 

Examples: G.  106 + 102 = 1,000,000 +100 

                                           =1,000,100 

       H.    108 +10-3 = 100,000,000 + 0.001 

                                          = 100,000,000.001 

       I.   107 – 103    = 10,000,000 – 1000 

                                          = 9,999,000   

(10n)m = 10nm 

 

Decimals    Since our number system is a positional system based on ten 

{0,1,2,3,4,5,6,7,8,9} numerals, we have used the term decimal system. In general, we 

refer to expressions like 0.235 or 2.7142 as decimals as opposed ot 24, 98, 0 or 2478, 

which we more often speak of as whole numbers or integers. In fact, both are part and 

parcel of the same system. Just as the expanded from of 2478 is  

 2478 = 2 · 103 + 4 · 102 + 7 · 101 + 8 · 100 

          = 2000 + 400 + 70 + 8 

The expanded form of 0.235 is  

 0.235 = 2 · 
110

1
 +  3 ·

2

10

1
 + 5 · 

310

1
 

And the expanded form of 23.47 is 

 23.47 = 2 · 101 + 3 · 100 + 4 · 
110

1
 + 7 · 

2

10

1
 

                       = 20 + 3 + 
100

7

10

4
+
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Powers of Ten (10) and Computation with Decimals 

 

Adding and Subtracting Decimals 

 

Suppose we wish to add 2.71 and 32.762, we would do the following: 

 

 2.71 + 37.762 = 40.472        

                                                       

To add decimals by hand, write the numbers in the vertical style lining up the decimal 

points of each number over the decimal point of the other number and then add 

essentially just as we add integers.       

 

Suppose now that we want to subtract 2.71 from 37.762, we would do the following: 

 

 37.762 – 2.71 = 35.052 

 

Thus, we write the problem in vertical style lining up the decimal points and then subtract 

essentially as we subtract the integers.    

 

Multiplying Decimals 

 

Suppose we wish to calculate the product (31.76) ·  (4.6), we would do the following: 

 
(31.76) · (4.6) = 146.096 

 
Or  

 

31.76 
         4.6 

———— 

    19 056 

  127 04 

———— 

146.096 

 

To multiply two decimals: 

1. Multiply as with integers. 

2. Count the number of digits to the right of the decimal point in each number in the 

product, add these numbers, and call their sum t. 

3. Finally, place the decimal point in the product obtained so that there are t digits to the 

right of the decimal point.  
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Powers of Ten (10) and Computation with Decimals 

Dividing Decimals  

 

Suppose we want to divide 537.6 by 2.56, we have  
 

537.7   2.56 = 210 
 

The problem is reduced to that of dividing 52,760 by 256; that is, to dividing integers. 

Recall that, when confronted by a division like 
 

,6.53756.2   
 

students are often told to « move  the decimal point in both the divisor and the dividend 2 

places to the right so that the divisor becomes an integer.”  Multiplying  both by     

justifies this rule and, by hand, we have 
   

.210

.60.53756.2  

512  

256 

256 

    0 

We check our answer by multiplying the divisor times the quotient. 
 

                                                           Check:    2.56 

       210 

                ——— 

                  2560 

                                                                            512 

                   ——— 

                 537.60 
 

Nonterminating Decimals and Rational Numbers 
 

Somewhat surprisingly not all national number have decimal expansions terminated. For 

example, it is well-known that 

3

1
= 0.333 … - 0. 3  

where the three dots indicate that the decimal continues ad infinitum and the bar over the 

3 indicates the digit or group of digits that repeats.  

 

A nonterminating decimal that has the property that a digit or group of digits repeats ad 

infinitum from some point on is called a periodic or repeating decimal. The number of 

digits in the repeating group is called the length of the period.  

 

Every repeating decimal represents a rational number a/b. If a/b is in simplest form, b 

must contain a prime factor other than 2 or 5. Conversely, if a/b is such a rational number 

its decimal representation must be repeating.  
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Powers of Ten (10) and Computation with Decimals 

 

Ordering Decimals   

 

Ordering decimals is much like ordering integers. For example, to determine the larger 

of 247,761 and 2,326,447 write both numerals as if they had the same number of digits; 

that is, write 

  0,247,761 and   2,326,447 

 

Then determine the first place from the left where the digits differ. It follows from the 

idea of positional notation that the larger integer is the integer with the larger of these two 

different digits. In the present case, the first digits differ and so  

 

  0,247,761 < 2,326,447 

In a similar example, 

                  34,716 < 34,723 

Since the first pair of corresponding digits that differ are the 1 and the 2 and 1<2. 

 

To order two positive decimals, determine the first digitis from the left that differ. The 

decimal with the lesser of these two digits is the lesser decimal. 

 

Example Decide which of the decimals represent the lesser number. 

 

  23.45 and 23.4545 

 

Solution Since 23.45 = 23.4545….., the first digits from the left differ are 0 and 5. Since 

0 < 5, it follows that 23.45 < 23.4545 
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Powers of Ten (10) and Computation with Decimals 

 

Activity 1 

 
*Given  a) 103  b)  104  c) 105  d) 109  e) 1012   

   f) 10-3  g) 10-4  h) 10-5  i) 10-9  j) 10-12 

 

1.  In (*) express as a single integer or a single decimal. 

  

a),   d),   g),   and  h) 

 

2. In (*) add the powers  

 

b) + d)   and c) + h) 

 

3. In (*) subtract the powers 

 

c) – b) and a) – g) 

 

4. In (*) multiply  

 

e) ∙ i) and f) ∙ h)  

 

5. In (*) divide  

 

j) ÷ c) and h) ÷ j) 

 

6. In (*) raise c) to the 4th power. 

 

7. Make a mental calculation to determine an approximate answer and then 

determine the accurate result of each of these calculations. 

 

a) 23.47 + 7.81  b) 351.42 – 417.815 

 

8. Calculate these products. 

 

a) (471.2) ∙ (2.3)  b) (36.34) ∙ (1.02) 

 

9. Divide 36.9 by 1.23 and check your answer. 

 

10. Write each of these repeating decimals in the form a/b where a and b are integers 

and the fraction is in the simplest form. Check by dividing a and b with your 

calculator. 

 

 



 48 

Powers of Ten (10) and Computation with Decimals 

 

Activity 2 
 

 

 

1. Arrange these numbers in order from least to greatest  

 

24

11
, 

8

3
, 0.37, 0.4584, 037666…, 0.4583 

 

2. Express these two real numbers in expanded form 

 

a) 54,312    b) 21.345 

 

3. Fill in the blanks so that each of these is an arithmetic progression. 

a) 3.4, 4.3, 5.2, _____, _____, ______ 

b) -31.56 _____, -21.10, _____, ______,______,______ 

c) 0.0114, _____,______,0.3204,______,______ 

d) 1.07, _____,______,______,8.78,_____ 

 

4. Fill in the blanks so that each of these is a geometric progression. 

a) 2.11,2.327,_____,_____,_____ 

b) 35.1,_____,2.835,_____,_____ 

c) 6.01,_____,_____,0.75125,______ 

 

5. Use long division to find the decimal expansion of 
7

3
. What are the repeating 

decimals?  
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Theme II: Real Numbers: Decimals and Percents 

 

Lesson 3: Ratio and Proportion  
                                                                                                  

                                                                                                  

  

  
 

 

 

 

 
Ratio 

 

At basketball practice, Caralee missed 18 free throws out of 45 attempts.  Since she mad 

27 free throws, we say that the ratio of the number missed to the number made was 18 to 

27.  This can be expressed by the fraction 18/27 or, somewhat archaically, by the notation 

18 : 27.  We will always use the fraction notation in what follows. 

 

Other ratios from Caralee’s basketball practice are: 

 

• The ratio of the number of shots made to the number attempted – 27 / 45, 
• The ratio of the number of shots missed to the number attempted – 18 / 45, 
• The ratio of the number of shots made to the number missed – 27 / 18. 

 

If a and b are real numbers with b   0, the ratio of a to b is the fraction a / b. 

 

Ratios occur with great frequency in everyday life.  If you use 30.4 liters of gasoline in 

driving 400.4 miles, the efficiency of your car is measured in miles per gallon given by 

the ration 400.4 / 10.4 or 38.5 miles per gallon.  If Lincoln Grade School has 405 students 

and 15 teachers, the student teacher ratio is the quotient 405/15.  If Jose Varga got 56 hits 

in 181 times at bat, his batting average is the ration 56/181. The number of examples that 

could be citied is almost endless. 

 

 

       Do You Know? 
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Ratio and Proportion 

 
 

Determining Ratios 

 

Determine these ratios. 

a. The ratio of the number of boys to the number of girls in Martin Luther King 

High School if there are 285 boys and 228 girls. 

b. The ratio of the number of boys to the number of students in part (a) 
 

Solution 

 

a. The desired ratio is 285 / 228. 

b. Since the total number of students is 285 + 228 (that is, 513), the desired ratio 

is 285 / 513. 
 

The ratio of the number of boys to the number of students in Martin Luther King High 

School was shown to be 285 / 513 or 285 to 513.  This is certainly correct, but it is not 

nearly as informative as it would be if the ratio were written in simplest form. 

 

Thus,  

  
513

285
 = 

9

5
  

 

 
and this says that 5 / 9 (or a little more than 1 / 2) of the students in Martin Luther King 

High School are boys.  Reducing a ratio to lowest or simplest terms is often useful and 

informative. 

 

Expressing Ratios in Simplest Form 
 

Express this ratio in simplest form. 

 

 The ratio of 385 to 440 

 

 Solution:  The ratio of 385 to 440 is the quotient 385 / 440.  Expressing this in 

simplest form, we have 

 

   
440

385
 = 

8

7
 

 

       285 ÷ 57 = 5 

          513 ÷57 = 9 
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Ratio and Proportion  
 

 

Determining a Less Obvious Ratio 

 

If one seventh of the students at John F. Kennedy High School are non-swimmers, what 

is the ratio of non-swimmers to swimmers? 

 

Solution 

 

 The desired ratio is the number of non-swimmers divided by the number of 

swimmers.  Can we determine these numbers from the information given?  Actually, no; 

but the problem can still be solved.  Supposed there are n students in the school.  Then 
7

n
 

are non-swimmers and 
7

6n
 are swimmers.  Thus, the desired ratio is  

  

7

6
7
n

n

 =  
7

n
 · 

n6

7
 = 

6

1
. 

Proportion 

 

Ratios allow up to make clear comparisons when actual numbers sometime make them 

more obscure.  For example, at basketball practice, Caralee made 27 of 45 free throws 

attempted and Sonja made 24 of 40 attempts.  Which player appears to be the better foul 

shot shooter?  For Caralee, saying that the ratio of shots made to shots tried is 27 / 45 

amounts to saying that she made 3 /5 of her shots.  That is, 

 

  
45

27
 = 

5

3
. 

 

Similarly, for Sonja the ratio of shots made to shots attempted is 

 

  
40

24
 = 

5

3
, 

 

And this suggests that the two girls are equally capable at shooting foul shots.  Because 

of its importance in such comparisons, the equality of two ratios is called a proportion. 

 

Definition:  If a/b and c/d are two ratios and 

    
b

a
 = 

d

c
, 

 

This equality is called a proportion. 



 48 

Ratio and Proportion  
 

We know that 

  
b

a
 = 

d

c
 

For integers a, b, c, and d, if, and only if, ad = bc.  But essentially the same argument 

holds if a, b, c, and d are real numbers.  This leads to the next theorem. 

 

Theorem:  Conditions for a Proportion 

The equality 

  
b

a
 = 

d

c
 

 

is a proportion if, and only if, ad = bc. 

 

Determining Proportions 

Determine x so that the equality is proportion. 

 
49

28
 = 

21

x
 

 

Solution  We use the preceding theorem which amounts to multiplying both sides of the 

equality by the product of the denominators or “cross multiplying” as we often say. 

 
49

28
 = 

21

x
 

 

  28 ·21 = 49x 

 
49

2128 
 = x 

 

12 =  x 
 

Thus 
49

28
 = 

21

12
 

 

Therefore,     
b

a
 + 1 = 

d

c
 + 1,          {add 1 to both sides} 

 

     
b

a
+ 

b

b
 = 

d

c
+ 

d

d
 {since 

b

b
 = 1 =  

d

d
} 

 

and     
b

ba +
 =  

d

dc +
 {add fractions} 
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Ratio and Proportion 
 

Applications of Proportions  

 

Suppose that a car is traveling at a constant rate of 55 miles per hour. Table 7.2 gives the 

distances the car will travel in different time periods. 

 

 

 

 

 

 

 

 

 
The ratios d/t are all equal for the various time periods shown. That is,  

 

6

330

5

275

4

220

3

165

2

110

1

55
=====  

and so on. Thus, each pair of ratios from the list form a proportion. Indeed, d/t = 55 for 

every pair d and t. This is also expressed by saying that the distance traveled at a constant 

rate is proportional to the elapsed time. In the above instance 
 

    d = 55t   

for every pair d and t. The number 55 is called the constant of proportionality. 

 

Definition  y Proportional to x 

 

If the variables x and y are related by the equation 

    y = kx, which is the same 
x

y
= k  

then y is said to be proportional to x and k is called the constant of proportionality. 

 

This situation is extremely common in everyday life.   

Gasoline consumed by your car is proportional to the miles traveled.   

The cost of pencils purchased is proportional to the number of pencils purchased.  

Income from the school raffle is proportional to the number of tickets sold, and so on.

Table A      

Distance Traveled in t Hours at 55 Miles per Hour  

t = time 
d = 
distance   t = time d = distance 

1 55 5 275 

2 110 6 330 

3 165 7 385 

4 220 8 440 
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Ratio and Proportion 

 

Activity 1 

 
* There are 30 girls and 24 boys in an 8th grade class.  

 

1.  What is the ratio of  

 a) boys to girls  b)  girls to students 

 

2.  What is the ratio of 

 a) boys to students b)  girls to boys 

 

3.  What is the ratio of  

 a) students to girls b)  students to boys 

 

4.  Determine which of the following are proportions 

 a) 
12

8

3

2
=  b) 

36

27

28

21
=  c)  

31

8

28

7
=  

 

5.  Determine which of the following are proportions: 

 a) 
95

57

85

51
=  b) 

60

18

49

14
=  c)  

48

28

55

20
=  

 

6.  Express each of these ratios in the simplest form. 

a) a ratio of 24 to 16  b)  a ratio of 296 to 111 

c)  a ratio of 248 to 372 d) a ratio of 209 to 341 

 

7.  Determine x so that the equality is a proportion 

a)  
x

20

63

35
=   b)  

x

7.1

49.3

11.2
=  

 

8.  Determine the value of r so that each is a proportion 

a)  
2114

6 r
=   b) 

r

10

12

8
=  

 

9.  Determine values of s and t so that each is a proportion 

a)  
95

8551
=

t
  b) 

8.72.3

47 s
=  

 

10.  When y is proportional to x3 and y=32 when x=12;  

       determine the value of y when x=6.  



 48 

Ratio and Proportion 

 

Activity 2 

 
1.  If s is proportional to t and s = 62.5 when t=7, what is s when t=10? 

 

2.  The flag pole at Sunnyside Elementary School casts a shadow 9’8’’ long at the same 

time Mr. Schaal’s shadow is 3’2’’. If Mr. Schaal is 6’3’’ tall, how tall is the flag pole to 

the nearest foot? 

 

3.  A kilometer is a bit more than six tenths of a mile. If the speed limit along a stretch of 

highway in Canada is 90 kilometers per hour, about how fast can you travel in miles per 

hour and still not break the speed limit? 

 

4.  a) If y is proportional to x2 and y = 27 when x = 6, determine y  when x =12. 

     b) Determine the ratio of the y-values in part (a). 

     c)  If y and x are related as in part (a), what happens to the value of y  if the value of   

            x is doubled? Explain. 

 

5.  If y is proportional to 1/x and y=3.5 when x =84, determine y when x=14. 

     (Hint: y=k(1/x).) 
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Theme II: Real Numbers: Decimals and Percents 

 

Lesson 4: Percent 
                                                                                                  

                                                                                                  

  

  
 

 

One of the most important uses of ratios in school mathematics is the notion of percent 

per hundred.  Thus, 50% is the ratio 50/100, and this is quickly reduced to the fraction ½ 

or written as the decimal 0.50.  Thus, if I have 98$ and give you 50% of what I have, I 

give you 
 

  
2

1
 ∙ $98 = $49  or   0.5    $98= $49.  

 

The ‘‘of ’’ in the preceding sentence translates into “times.” Thus, 
 

   50% of  means  50% , 

   
2

1
  of   means  1/2 , 

   0.5 of   means  0.5 . 
 

If r is any nonnegative real number, then r percent, written r %, is the ratio 

                                                              

     
100

r
.    

     

Since r %is defined as the ratio r/100 and dividing by 100 moves the decimal point 2 

places to the left, it is easy to write a given percent as a decimal.  For example,  

12% = 0.12, 25% = 0.25, 130% = 1.3, and so on.  Conversely, to write a decimal as a 

percent, we need only move the decimal point 2 places to the right.  

 Thus, 0.125 = 12.5% or 12
2

1
% 0.10 = 10%, 1.50% and so on. 

Expressing Decimals as Percents 
 

Example   Express these decimals as percents. 

 (a) 0.25 (b) 0.333 … (c) 2.15 

 

        SOLUTION 

  

(a) 0.25 = 25% 

(b) 0.33 … = 33.333 …% 

(c) 1.255 = 125.5% 

 

 

 

       Do You Know? 
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Percent 

 
Expressing Percents as Decimals 

 

Example Express these percents as decimals. 

 

 (a) 40% (b) 12% (c) 127% 

 

Solution (a) 40% = 0.40 

  (b) 12% = 0.40 

  (c)  127%=1.27 

 

Expressing Percents as Fractions 

 

Example   Express each of these percents as fraction in lowest terms. 

 

 (a) 60% (b) 66 2/3% (c) 12.5% 

 

Solution (a) By definition 60% means 60/100. Therefore, 

 

             60% = 
100

60
= .

5

3
 

   (b) Here            37
2

1
% = 

100

2

1
37

     

                = 
100

2

65

  

                = .
40

13

200

65
=  

    

 (c)  66
3

2
% = 

100

3

2
66

= 
100

3

200

= 
3

2
. 

  

 (d)  125% =  
100

125
 = 

4

5
 = or 1

4

1
. 
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Expressing Fractions as Percents 

 

Example  Express these fractions as percents. 
 

 (a) 
8

1
 (b) 

3

1
 

 

Solution I 

 

 (Using proportions)   Since percents are rations, we can use variables to determine the 

desired percents. 

 

(a) Suppose 1/8 = r% = r/100. Then 

    r = 100 ∙ 
8

1
 = 12.5 

      

 and  

                                                         r% = 12.5% 

 

(b) Let 1/3 = s % = s/100.  Then 

 

              s = 
3

100
 = 33

3

1
 = 33.3  

                                                        3          3 

 

 and         s% = 33. 3 % 

 

Solution II 

 

(Using Decimals) Here we write the fractions as decimals and then percents. 

 

(a) By division 

     
8

1
 = 0.125 = 12.5% 

(b)  Here   

     
3

1
= 0.333 … = 33. 3 % = 33

3

1
%. 
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Applications of Percent 

 

Use of percents is commonplace. Three of the most common types of usages are 

illustrated in the next three examples. 

 

Calculating a Percentage of a Number   

 

The Smetanas bought a house for $175,000. If a 15% down payment was required, how 

much was the down payment? 

 

Solution I 

 

(Using an equation)  The down payment is 15% of the cost of the house. Thus, if d is the 

down payment,  
 

  d = 15%   $175,000 

     = 0.15   $175,000 

                = $26,250 

 

Solution II 

 

(Using ratio and proportion)  The ration of 23 to the number of questions on the test must 

be the same ratio as 92%. So, 
 

    
n

23
 = 

100

92
 = 0.92. 

Thus, 

    23 = 0.92   n 

and 

    n = 23   0.92 = 25 

as before. 

 

Calculating What Percentage One Number is of Another  

 

Tara got 28 out of 35 possible points on her last math test. What percentage score did the 

teacher record in her grade book for Tara? 

 

Solution I 

 

(Using the definition) Tara got twenty-eight thirty fifths of the test right. Since 

    
35

28
 = 0.80 = 80% 

the recorded  80% in her grade book. 
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Solution II 
 

Let x be the desired percentage, then 

      
35

28

100
=

x
 

and  

      x = 
35

10028 
 = 80%. 

 

Compound Interest 
 

If you keep money in a savings account at a bank, the bank pays you interest at a fixed 

rate (percentage) for the privilege of using your money. For example, suppose you invest 

$5000 for a year at a 7% interest. How much is your investment worth at the end of the 

year? Since the interest earned is 7% of $5000, the interest earned is 

  7%   $5000 = 0.07   $5000 

            = $5000 ∙ (1.07) 

               = $5350. 
 

If you leave the total investment in the bank, its value at the end of second year is 

  $5350 +  0.07   $5350 = $5350 · (1.07) 

                                                               = $5000 · (1.07)(1.07) 

                                                               = $5000 · (1.07)2 

                                                               = $5724.50 
 

Similarly, at the end of the third year, your investment would be worth 
 

  $5000 · (1.07)3 = $6125.22 
 

to the nearest penny. In general, it would be worth  
 

  $5000 · (1.07)n 
 

at the end of  n years. This is an example of compound interest where the term 

“compound” implies that each year you earn interest on all the interest earned in 

preceding years as well as on the original amount invested (the principal). 
 

Usually, these days, interest is compounded more than once a year. Suppose the $5000 

investment just discussed was made in a bank that paid interest at the rate of 7% 

compounded semi-annually; that is twice a year. Since the rate for a year is 7%, the rate 

for half a year is 3.5%. Thus, the value of the investment at the end of the year (that is, at 

the end of two interest periods) is 
 

  $5000(1.035)2 = $5356.13 

and the values at the end of 2 years and 3 years respectively are 

  $5000(1.035)4 = $5737.62 

and   

  $5000(1.035)6 = $6146.28. 
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Compounding more and more frequently is to your advantage and, to attract customers, 

some banks are now compounding monthly are even daily. The above calculations are 

typical, and are summarized in this theorem.  

 

Theorem  

 

Compounding Compound Interest  

The value of an investment of P dollars at the end of n years if interest is paid at the 

annual rate of r% compounded t times a year is  

  
nttr

P 







+

100

/
1 . 
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Activity 1 

 
*Write each of the following rations as percents.  
 

1.   a)   
16

3
 b)   

25

7
      c)   

40

37
 

 

2.   a)  
6

5
 b)   

91.8

24.3
    c)   

015.23

801.7
 

 

3.   a)   
7

6.1
 b)   

6

2
 

 

4.   Write each of these as percents. 
   

a)   0.19 b)   0.015 c)   2.15 d)   3 
 

5.   Write each of these as fractions in simplest form. 
  

a)   10% b)   25%   c)   62.5%   d)   137.5% 
 

6.   Calculate each of the following. 
 

 a)   70% b) 120% of 84   c)  38% of 751 
 

7.   Calculate each of the following. 
 

 a)  %
2

1
7  of $20,000    b)  .02% of 27,481         c)  1.05% of 845 

 

8.   Compute each of these mentally. 
 

 a)  50% of 840  b)   10% of 2480 

 c)  12.5% of 48 d)   125% of 24 

 e)  200% of 56  f)    110% of 180 
 

9.   Mentally convert each of these to a percent. 
 

 a)  
28

7
  b)  

33

11
  c)  

144

72
 d)  

66

44
 

 

10.  Mentally estimate the number that should go in the blank to make each of these true. 
 

a)  27% of ________ equals 16. 

b)  4 is ________ % of 7.5. 

c)   41% of 120 = ________. 
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Activity 2 

 
 

1.   Arrange the following in order of increasing size. 

 

 
25

19
,   0. 7 ,   77%,   and    

19

15
 

 
2.  In a given population of men women, 40% of men are married and 30% of the women 

are married. What percentage of the adult population is married? 

 
3.   Show that the sale price of items marked down 15% is the same as 85% of the retail 

price.  

 
4.   During the first half of a basketball game, the basketball team at a High School made 

60% of their 40 field goal attempts. During the second half, they scored on only 25% of 

44 attempts from the field. To the nearest 1%, what was their field goal shooting 

percentage for the entire game?  

 
5.  When asked about his performance in an upset victory in a football game, the 

quarterback said that he gave 110% effort. Briefly discuss the reasonableness of this 

assertion. 
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Lesson 5: Placing Numbers in Perspective – Scientific Notation 
                                                                                                  

                                                                                                  

  

  
 

 

 

 

What is a billion dollars or how much is a trillion dollars? For many people, these 

numbers are just words – so large that they hardly seem to mean anything. But we hear 

numbers like these every day, and we cannot truly understand the major issues of our 

time unless we have some understanding of the numbers that are involved. In this unit, 

we will study several techniques for putting large or small numbers into a perspective that 

gives them real meaning. 

 

Writing Large and Small Numbers 
 

Working with large and small numbers is much easier when we write them in a special 

format known as scientific notation. We express numbers in this format by writing a 

number between 1 and 10 multiplied by a power if 10. For example, a billion is ten to the 

ninth power, or 109, so we write 6 billion in scientific notation as 6 x 109. Similarly, we 

write 420 in scientific notation as 4.2   102, and 0.67 as 6.7   10-1. 

 

Scientific Notation 
 

Scientific Notation is a format in which a number is expressed as a number between 1 

and 10 multiplied by a power of 10. Scientific notation makes it easy to write numbers no 

matter how large or small they might be. We must be careful, however, not to let this ease 

of writing deceive us. For example, it is easy to write the number 1080 that we might 

think it is not all that big – but, in fact it is a number larger than the total number of atoms 

in the known universe. 

 

EXAMPLE 1 Numbers in Scientific Notation 

Rewrite each of the following statements using scientific notation. 

a. Let’s say the World Bank has about $9,100,000,000,000. 

b. The diameter of a hydrogen nucleus is about 0.000000000000001 meter. 

 

Solution    Notice how much easier it is to read the numbers with scientific notation. 

a. The World Bank has about $9.1   1012, or $9.1 trillion. 

b. The diameter of a hydrogen nucleus is about 1   10-15 meter. 

 

 

 

 

       Do You Know? 
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Approximations with Scientific Notation 

Another advantage of scientific notation is that it makes it easy to approximate answers 

without a calculator.  For example, we can quickly approximate the answers to 5795   

326 by rounding 5795 to 6000 and 326 to 300. Writing the rounded numbers in scientific 

notation, we then see that 

 

5795   326 is approximately (6   103)   (3   102) = 18   105 = 1,800,000 

Because the exact answer is 1,889,170, this approximation provides a good estimate. 

 

EXAMPLE 2 Checking Answers with Approximations 

You and a friend are doing a rough calculation of how much garbage new City residents 

produce every day. You estimate that, on average, each of the 8 million residents produce 

1.8 pounds, or 0.0009 ton, of garbage each day. Thus, the total amount of garbage is 

 

     8,000,000 persons   0.0009 ton 

                                                                    person 

 

Your friend quickly presses calculator buttons and tells you that the answer is 225 tons. 

Without using your calculator, determine whether this answer is reasonable. 

 

Solution You can write 8 million as 8   106, which is nearly 10. You can write 0.0009 as 

9 X 10-3, which is nearly 10. Thus, the product should be approximately 

  107 X 10-3 =107-3 =104 = 10,000 

 

Clearly, your friend’s answer of 225 tons is too small.  This simple approximation 

technique provides a useful check, even though it did not tell us the exact answer. 

 

 

Scientific Notation - Operations 

 To convert a number from ordinary notation to scientific notation: 

Step 1. Move the decimal point to come after the first nonzero digit. 

Step 2. For the power of 10, use the number of places the decimal point moves; the 

power is positive if the decimal point moves to the left and negative if it moves to the 

right. 

 

Examples: 

 

3042     →    3.042 X 103      Decimal moves 3 places to the left. 

 

0.00012  →   1.2 X 10 -4      Decimal moves 4 places to the right. 

 

226 X 102 
→   (2.26 X 102) X 102 = 2.26 X 104    Decimal moves 2 places to the left. 
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Converting from Scientific Notation 

To convert a number from scientific notation to ordinary notation: 

Step 1 The power of 10 indicates how many places to move the decimal point; move it to 

the right if the power of 10 is positive and to the left if it is negative. 

Step 2 If moving the decimal point creates any open places, fill them with zeros. 

 

Examples: 

4.01   102    
→    401    Move the decimal 2 places to the right. 

 

3.6   106    →       3,600,000    Move the decimal 6 places to the right. 

 

5.7   10-3   →      0.0057      Move the decimal 3 places to the left. 

 

Multiplying or Dividing with Scientific Notation 

Multiplying or dividing numbers in scientific notation simply requires operating on the 

powers of 10 and the other parts of the number separately. 

 

Examples: 

(6   102)   (4   105) = (6   4) X (102   105) 

                            = 24   107 

                                          = 2.4   108 

 

4.2   10-2     =    4.2         10-2 

8.4   10-5          8.4           10-5 

                        = 0.5   10-2-(-5)  

                        = 0.5   103  

                        = 5   102 

 

Note that, in both examples, we first found an answer in which the number multiplied by 

a power of 10 was not between 1 and 10.  We the followed the process for converting the 

final answer into scientific notation. 

 

Addition and Subtraction with Scientific Notation 

In general, we must write numbers in ordinary notation before adding or subtracting. 

 

Examples: 

(3   106)  + (5   102) = 3,000,000 + 500 

                                  = 3,000,500 

                                  = 3.0005   106 

 

(4.6   109) – (5   108) = 4,600,000,000 – 500,000,000 

                                   = 4,100,000,000 

                                   = 4.1   109 
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We know both numbers have the same power of 10, we can factor out the power of 10 

first. 

 

Examples: 

 

(7   1010) + (4   1010) = (7 + 4)   1010 

                                = 11   1010 

                                = 1.1   1011 

 

(2.3   10-22) – (1.6   10-22) = (2.3 – 1.6)   10-22 

                                      = 0.7   10-22 

                                      = 0.7   10-23 

 

 

 

Placing Numbers in Perspective Through Comparisons 

 

A second general way to put numbers in perspective is by making comparisons. For 

example, consider $100 billion, which is roughly the wealth of the world’s richest 

individuals. It’s easy to say a number like 100 billion, but how big is it? Let us think of it 

in terms of counting. Suppose you were asked to count $100 billion in $1 bills. How long 

would it take? Clearly, if we assume you can count 1 Bill each second, it would take 100 

billion seconds. We can put 100 billion (1011) seconds in perspective by converting to 

years, using a chain of conversions: 

 

  

 

 

 

 We see that 100 billion seconds is equivalent to 3171 years. In other words, you 

would need more then three thousand years just to count $100 billion in $1 bills. And 

that assumes that you never take a break: no sleeping, no eating, and absolutely no dying! 
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Activity 1 
 

1.  Convert each of the following numbers from scientific to ordinary notation and write  

     its name.   Example: 2   103 = 2000 = two thousand 

 a.  3   103  b.   6   106 c.  3.4   105  d.   2   10-2 

 e.  2.1   10-4  f.   4   10-5 

 

2.   Convert each of  the following numbers from scientific to ordinary notation and write  

      its name.  

 a.  8   102  b.   5   103 c.  9.6   104  d.   2   10-3 

 e.  3.3   10-5  f.   7.66   10-2 

 

3.   Write each of the following numbers in scientific notation. 

 a. 233   b.  123,547   c. 0.11   d.  9736.23 

 e. 124.58  f.   0.8642 
 

4.   Write each of the following numbers in scientific notation. 

 a.  4327  b.  984.35 c.  0.0045  d.  624.87 

 e.  0.1357  f.   98.180004 
 

5.   Do the following operations and show your work clearly. Be sure to express answers  

      in scientific notation.  

      You may round your answers to one decimal place (as in 3.2105). 

 a.   (3   103)   (2   102) b.  (4   102)   (3   108) 

 c.   (3   103) + (2   102) d.  (8   1012)   (4   104) 
 

6.   Do the following operations and show your work clearly. Be sure to express answers   

      in scientific notation.  

      You may round your answers to one decimal place (as in 3.2   105). 

 a.  (4   107)   (2   108) b.  (3.2   105)   (2   104) 

 c.  (4   103) + (5   102) d.  (9   1013)   (3   1010)   
 

In problems 7 and 8, compare each pair of numbers. By what factor do the numbers 

differ? 

 

7.   a. 1035, 1026     b.    1017, 1027  c.   1 billion, 1 million 

      d.   7 trillion, 7 thousand    e.     2   10-6, 2   10-9 f.   6.1   1027, 6.1   1029 

 

8.   a. 250 million, 5 billion    b.    9.3   102, 3.1  10-2                   c.  10-8, 2   10-13 

      d.   3.5   10-2, 7   10-8    e.     1 thousand, 1 thousandth     f.  1012, 10-9 

 

9. The diameter of a typical bacterium is about 0.000001 meter. 
 

10.   A beam of light can travel the length of a soccer field in about 30 nanoseconds.  

       Express your answer in seconds. (Hint: Recall that nano means one billionth.) 
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Activity 2 
 

In Problems 1-2 make an estimate of the answer without a calculator, showing your 

method of estimation. Then do the exact calculation (with a calculator if necessary),     

and describe how well your approximation technique worked.  

 
1.         a. 300, 000   100  b. 5.1 million   1.9 thousand 

c. 4   109  2.1   106 d. 33 million   3.1 thousand 

 e. 4,288,364   2132  f.  (6.129845   106)   (2.198   104) 

 

2.         a. 5.6 billion   200  b. 4 trillion   260 million 

c. 9000   54,986   d. 3 billion   25,000 

 e. 5987   341   f.  43   765 

 
Decide whether each of the following statements makes sense (or is clearly true) or does 

not make sense (or is clearly false). Explain your reasoning. 

 
3.   I read a book that had 105 words in it. 

 
4.   I’ve seen about 1050 commercials on TV. 

 
5.  During a recent sold-out soccer game, at a large stadium, the star player signed 

autographs for every single person in attendance. 
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Lesson 1: Sets and Their Operations 
                                                                                                  

                                                                                                  

  

  
 

 

 

 

A set is a well-defined collection of objects where the arrangement of the elements in the 

collection is not important.  Sets are usually denoted by capital letters:  A, B, C, …J, 

…X, Y,.  Small or lower case letters a, b, c, …, x, y and numbers are typically used to 

denote the elements or members of a set. 

 

Example:  B =  qponml ,,,,, .  Two typical ways to denote that p is a member of the set 

B are 

1) “P is an element of B;” 

2) P   B 

 

Similarly, one may state that 

3) “a is not an element of B”; or 

4) a B 

 

One may denote a set by describing its elements; example A = {x : x is a real number and 

x is not a rational}.  That is A is the set of all irrational numbers; numbers such as 2 , 

3 5 , etc. 

 

Subsets 

If every element in a set B is also an element in set A, then B is called a subset of A.  

Symbolically we denote use the notation B   A, meaning B is strictly a subset of A and 

B is smaller than A; or B   A, meaning B is a subset of A and B may be equal to A. 

 

Two sets C and D are equal if each set has the exact same elements.  Example: 

 

If C = {1, 2, 3, 4} and D = {1, 3, 4, 3} then C and D are equal.  This also means that C   

D and D   C. 

 

However, the two sets A = {x, y, z} and B {1, 2, 3} are not equal.  The set with no 

elements is called the empty set, and it is denoted by Ø.  Ø = {}. 

 

       Do You Know? 
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Every set has two (2) obvious subsets; 

A    A  and ø   A.   

Also, if A    B and B   C then A   C. 

 

For example, consider A = {x, z}, B = {x, y, z} and C = {w, x, y, z} 

The number of elements of a set A is called the cardinality of A and this is denoted 

symbolically by n (A). 

 

Example:  If A = {x, y, z} then n (A) = 3 

If n (A) = n, for some natural number n, A is said to be finite; otherwise A is said to have 

an infinite number of elements.  A = {x, y, z} is finite.  B = {set of all even … numbers 

is infinite. 

 

Universal Set 

 

In any application of sets, usually there are many different sets under consideration.  

Moreover, we often place all sets under consideration in some fixed large set call the 

Universal set, denoted by U. 

 

Examples: 

 

If for a given application, all the sets under consideration are 

A = {1, 2, 3, 4, 5,} 

B = {x; x is an integer, x = 2n for some integers n} 

C = {1, 3, 5, …, 2n – 1, …}. 

D = {1, -2, -3. -4, -5, -6, -7} 

 

Then for these sets the universal set could be selected as Z, the set of all integers, i.e. U = 

Z. 

 

If we were considering sets of different people from different countries from various 

continents, then the universal set might be selected as U = {the world population of all 

persons}. 

 

The Power set P(A) of Set A 

 

We define the power set of set A as the set of all subsets of A and it is denoted by P(A).  

Example if A = {a, b, c, d}, then P(A) = {{a, b, c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, 

d}, {a, b}, {a, c,}, {a, d}, {b, c}, {b, d}, {c, d}, {a}, {b}, {c}, {d}, ø} 

 

It is not an accident that n(A) = 4 and n(P(A)) = 16. 

What is 24?  Hint:  (P(A)) = 2n(A)  
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Venn Diagrams 

 

A Venn diagram is a pictorial representation of sets in which sets are represented by 

circled areas in the plane. 

 

The universal set U is represented by the interior of a rectangle, and the other sets are 

represented by circular figures lying within the rectangle.  If A   B, then the circular 

figures representing A will be entirely within the circular figures representing B as in 

Figure I(a).  if A and B are disjoint, i.e., if they have no elements in common, then the 

circular figures representing A will be separated from the circular figures representing b 

as in Figure I(b). 

 

However, if A and B are two arbitrary sets, it is possible that some objects are in A but 

not in B, some are in B but not in A, some are in both A and B, and some are in neither A 

nor B; hence in general we represent A and B as in Figure H©  . 

 

 
 

Partitions 

 

Let J be a nonempty set. A partition of J is a subdivision of J into nonoverlapping, 

nonempty subsets.  Precisely, a partition of J is a collection {Ji} of nonempty subsets of J 

such that:   

(i) Each a in J belongs to one of the susets Ji 

(ii) The sets of {Ji} are mutually disjoint; that is, if 

 

Ji   Jk then Ai   Ak = ø 

 

The subsets in a partition are called cells.  Figure II is a Venn diagram of a partition of 

the rectangular set J of points into five cells, J1, J2, J3, J4, and J5. 

 

 

 

 

A 
B 

a 

B 
A 

b 

A B 

c 

 

u 

 

u u 

 

Figure I 

a 

J1                                   J2                                      J3 

 

 

 

              J4                                                 J5 
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Union, Intersection, Complement, and Difference 

 

The union of two sets a and B, denoted by A   B, is the set of all elements which 

belong to A or to B; that is, 

 

A   B = {x: x   A or x   B} 

 

Here “or” is used in the sense of and/or.   

Can you illustrate this with a Venn Diagram?  

 

 

 

 

 

The intersection of two sets A and B, denoted by A   B, is the set of elements which 

belong to both A and B; that is, 

 

A   B  = {x: x   A and x   B} 

Can you illustrate this with a Venn Diagram?  

 

 

If A   B = ø, that is, if A and B do not have any elements in common, then A and B are 

said to be disjoint or nonintersecting. 

 

Can you do the following?  

 

Let A = {1, 2, 3, 4}, b = {3, 4, 5, 6, 7}, and C  {2, 3, 5, 7}.  Find (a) A   B; (b) A   B; 

(c) A   C; (d) A   C. 

 

The operation of set inclusion is closely related to the operations of union and 

intersection, as shown by the following theorem. 

 

Theorem A:  The following are equivalent:  A   B, A   B = A, and A   B = B. 
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Complements and Differences  

 

Recall that all sets under consideration at a particular time are subsets of a fixed universal 

set U.  The complement of a set A, denoted by Ac, is the set of elements which belong to 

U but which do not belong to A; that is 

  Ac = {x: x    U, x  A} 

 

The difference of A and b, denoted by A - B, is set the set of elements which belong to A 

but which do not belong to B; that is 

 

A - B = {x: x    A, x  B} 

The set A\B is read “A minus B”. 

 

The symmetric difference of sets A and B, denoted by A B, consists of those elements 

which belong to A or B but not to both; that is, 

 A  B = (AB) - (AB) 

 

One can also show that 

 A  B = (A - B)   (B - A) 

 

For example, suppose A = {1, 2, 3, 4, 5, 6} and B = {4, 5, 6, 7, 8, 9}.  Then, A - B = {1, 

2, 3}, B - A = {7, 8, 9} and so A  B = {1, 2, 3, 7, 8, 9} 

 

Laws for the Algebra of Sets 

 

Idempotent laws 

(1a)  A   A = A (1b) A A = A 

Associative laws 

(2a) (AB) C = A  (BC) (2b)  (A B)   C = A   (B  C) 

Commutative laws 

(3a)  A B = BA (3b)  A B = B A 

Distributive laws 

(4a)  A (BC) = (AB)   (AC) (4b)  A  (BC) = (A B)  ( A  C) 

Identity laws 

(5a)  A  ø = A 

(6a)  AU = U 

(5b)  A U = A 

(6b)  A  ø = ø 

Involution laws 

(7)  (Ac)c = A 

Complement laws 

(8a)  AUc = U 

(9a)  Uc = ø 

(8b)  A Ac = ø 

(9b)  øc = U 

DeMorgan’s laws 

(10a)  (AB)c = Ac   Bc (10b)  (A B)c = Ac   Bc 
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Activity I 

 
1.  Give a verbal description of each of the following sets: 

 a.  A = {a, e, i, o, u, y} b.  B = {1, 2, 3, 4, 5, 6, 7, 8, 9} 

 c.  {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday} 

 

2.  Give a verbal description of each of the following sets: 

 a.  {…, -5, -3, -1, 1, 3, 5, …} 

 b.  {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranius, Neptune, Pluto} 

 c.  {January, February, March, …, October, November, December} 
 

 

3.   Write in set notation as a listing, the following sets: 

 a. The set of neutral or counting numbers b.  The set of whole numbers  

 c. The set of all integers 
 

4.   Write a set notation describing the following sets: 

 a.  The set of rational numbers 

 b.  The set of irrational numbers 

 c.  The set of real numbers 
 

5.   Describe each of the sets using the listing method.  

 a.  {x: x is an odd counting or natural number with one digit} 

 b.  {x: x2 = 9} 

 c.   {x: x is an even integer and x > 0} 
 

6.   Which of the following sets are equal. 

 A = {1, 2, 3, 4, 5, 6};  B.  {a, b, c, d, e};  C = {1, 4, 2, 5, 3} 

 D = {x: x is the first five letters of the alphabet} 

 E = {x: x is a natural number less than 5} 

 

7.   Let A = {x, y, z} 

 a.  What is the cardinality of A, i.e. n(A) = ? 

 b.  What is the power set of A, that is list the members of P(A) 

 c.  Name two subsets that exist for all sets 
 

8.   Let A = {1, 2, 4, 4}, B= {3, 4, 5, 6, 7}; and C = {2, 3, 5, 7} and let U = {x: x is less 

than or equal 20.  What is   

 a.  A B; b.  A B; c.  A C Cc 

 

9.   Use Venn diagrams to illustrate all problems and answers in problem 8.  

 

10.  Give two examples of finite sets and two examples of infinite sets. 
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Sets and Their Operations 
 

Activity II 

 
1. Given A = {1, 2, 3, 4,}, B = {3, 4, 5, 6, 7}, C = {2, 3, 5, 7} 

 a. What is A – C?  b. What is A   B = ? 

 

2. Use the sets A, B, and C in problem 1 to illustrate the communitative laws of union 

and intersections. 

 

3. Use the sets A, B, and C in (1) to illustrate the distributive laws 

 

4. Illustrate how:  (a) Natural numbers, (b) whole numbers, (c) Integers 

 

(d) Rational numbers, and  (e) real numbers relate to one another using Venn 

Diagram 

 

5. Given the set A = {x, y, z}, display P(A)? Illustrate at least three (3) ways to partition 

the set P(A). 

 

6. - 10. 

  Create and find five (5) problems about set operations and solve them. 
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Theme III: Organizing and Representing Numbers and Data 

 

Lesson 2: Relations 
                                                                                                

                                                                                                  

 

  
 

 

 

Product Sets – Cartesian Product 

 

Consider two arbitrary sets A and B.  The set of all ordered pairs (a, b) where a A and b 

B is called the product set, or Cartesian product, of A and B.  A short way to write 

this product is A x B, which is read “A cross B”.  That is 
 

  A x B = {(a,b): a A and b B. 

 

Example If   A = {1, 2} and B = {a, b, c}.  Then 

 

  A x B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)} 

Also 

  A x A = {(1,1), (1,2), (2,1), (2,2)} 
 

There are two things worth stating about these examples.  First of all, A x B   B x A.  

The Cartesian products deal with ordered pairs, so naturally the order in which the 

elements are considered is important.  Secondly, using n(S) for the number of elements in 

a set S, we have  

n(A x B) = 6 = 2 ∙ 3 = n(A) ∙ n(B) 

 

 In fact, n(A x B) = n(A) · n(B) for any finite sets A and B.  This follows from the 

observation that, for an ordered pair (a, b) in A x B, there are n(A) possibilities for a, and 

for each of these, there are n(B) possibilities for b. 

 

The idea of a product of sets can be extended to any finite number of sets.  For any sets 

A1,…,An and is denoted by 

  A1 x A2 x…x An  or  
n

i

A
1=

i 

 

 

 

 

 

 

 

       Do You Know? 
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Relations 

 

Let A and B be two arbitrary sets.  A binary relation or simply, relation from A to B is 

a subset of A x B. 

 

Thus if R is a relation from A to B.  Then R is a set of ordered pairs.  i.e. 

 R = {(a, b) where aA and bB}. 

 

Theorem A 

 

If R is a relation from a set A to a set B, then for every (a, b)   A x B 

(i) (a,b)   R; we then say “a is R-related to b” and write aRb; or 

(ii) (a,b)  R; we then say “a is not R-related to b” and write a/b. 

 

If R is a relation from a set A to itself, that is R is a subset of A2 = A x A, then we say 

that R is a relation on A. 

 

The domain of a relation R is the set of all first elements of the ordered pairs that belong 

to R, and the range of R is the set of all second elements. 

 

Inverse Relation 

 

Let R be any relation from a set A to a set B.  The inverse of R, denoted by R-1 , is the 

relation from B to A which consists of those ordered pairs which, when reversed, belong 

to R; that is = R-1={(b,a): (a,b) R} 

 

For example, the inverse of the relation R = {(1,y), (1,z), (3,y)} from A = {1, 2, 3} to B = 

{x, y, z} is given by: 

 

  R-1={(y,1), (z,1),(y,3)} 

 

Clearly, if R is any relation, then (R-1)-1 = R.  Also, the domain and range of R-1 are equal, 

respectively, to the range and domain of R.  Moreover, if R is a relation on A, then R-1 is 

also a relation on A. 

 

Some Pictoral Representations of Relations 

 

First, we consider a relation T on the set R of real numbers; that is T is a subset of R2 = R 

x R.  Since R2 can be represented by the set of points in the plane, we can represent T by 

those points in the plane that belong to T.  This pictorial representation of the relation is 

sometimes called the graph of the relation T.  Another way of viewing the relation T as 

all ordered pairs of real numbers which satisfy some given equation 

  E(x,y)=0 

 

 



 48 

Relations 
 

In this case, the graph of the relation T is the same as the graph of the equation it 

satisfies. 

 

Example 

Let T on R x R be 

 

T: {(x,x): x R and x = x}  Then T = {…(-1,-1), (-½, -½), (0,0), (½,½), (1,1),…} 

 

 

 

 

 

 

 

Composition of Relations 

 

Let A, B and C be sets, and let R be a relation from A to B and let S be a relation from B 

to C.  That is, R is a subset of A x B and S is subset of B x C.  then R and S can define a 

relation from A to C denoted by R   S = {(a,c): where there exists b   B for which (a,b) 

  R and (b,c)   S} 

 

The relation R   S is called the composition of R and S; it is sometimes denoted simply 

by RS. 

 

Suppose R is a relation on a set A, that is R is a relation from a set A to itself.  Then R   

R is sometimes denoted by R2.  Similarly, R3 = R2   R = R   R    R.  Similarly, Rn is 

defined for all positive n.   

 

Special Relations on a Set A. 

 

Consider a given set A.  There are a number of important types of relations that are 

defined on A. 

 

Reflective Relation  

 

A relation R on a set A is reflective if aRa for every a A, that is, (a, a)   R for every a 

A.  Thus, R is not reflective if there exists an a   A such that (a, a)  R. 

 

 

 

 

 

 

 

x 

y 

T 
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Symmetric and Antisymmetric Relations 

 

A relation R on a set A is symmetric if whenever aRb then bRa, that is, if whenever (a, 

b)   R then (b, a) R.  Thus, R is not symmetric if there exists a, b  A such that (a, b)  

R but (b, a)  R. 

 

A relation R on a set A is antisymmetric if whenever aRb and bRa, then a =b, that is, if 

whenever (a, b), (b, a)   R then a = b.  Thus, R is not antisymmetric if there exist a, 

b   R such that (a, b) and (b, a) belong to R, but a  b. 

 

Transitive Relations 

 

A relation R on a set A is transitive if whenever aRb and bRc then aRc, that is, if 

whenever (a, b), (b, c)   R then (a, c)   R.  Thus, R is not transitive if there exist a, b, c 

  A such that (a, b), (b, c) R but (a, c)   R. 

 

Examples:  Which relation is reflective, symmetric, transitive? 

 

Given the relation R on the set A, determine whether R is reflective, symmetric, 

antisymmetric or transitive;  A = {1, 2, 3} amd R = {(1, 2), (1, 2), (1, 2), (2, 1), (2, 2), (3, 

1), (3, 3)}. 

 

Equivalence Relations 

 

Consider a nonempty set S.  A relation R on S is an equivalence relation if R is 

reflevive, symmetric, and transitive.  That is, R is an equivalence relation on S if it has 

the following three properties: 

 

1. For every a   S, aRa 

2. If aRb, then bRa 

3. If aRb and bRc, then aRc. 

 

The general idea behind an equivalence relation is that it is a classification of objects that 

are in some way “alike”.  In fact, the relation “=” of equality on any set S is an 

equivalence relation; that is: 

 

1. a = a for every a    S. 

2. If a = b, then b = a 

3. If a = b and b = c, then a = c. 
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Activity 1 

 

 

1. Let A = {1, 2, 3}; B = {2, 4, 6, 8} and C = {8, 9} 

a. How many elements are in A x B; List them 

b. How many elements are in B x A; List them 

c. Is A x B = B x A? 

 

2. Using sets A and B in problem 1,  

a. How many elements are in A x A? List them 

b. How many elements are in C x C?  List them 

 

3. Using the set B in problem 1, List the following relations on B as a set of ordered 

pairs: 

a. R1 where aRb means a is greater than or equal to b 

b. R2 where aRb means a is less than b. 

 

4.   Given a set A = {1, 2, 3, 4} list an anti-symmetric relation on A. 

 

5. Determine whether each of the following relations is reflexive, symmetric or transitive 

on the given set A. 

 

a. R1 = {(1, 2), (1, 2), (2, 1), (2, 2), (3, 3)} on A = {1, 2, 3} 

b. R2 = {(a, a), (a, b), (b, b), (b, c), (c, b), (c, c)} on A = {a, b, c} 

c. R3 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3), (4, 4)} on A = {1, 2, 3, 4} 

 

6. In problem 5 is R1, R2 or R3 an equivalence relation? 

 

7. In problem 5 what ordered pairs would you add to each relation(s), that are not 

equivalence, that would make them equivalent relation(s)? 

 

8. In problem 5 what is the domain set of R1, R2, R3? 

    In problem 5 what is the range set of R1, R2, R3? 

 

9.  Let A = R, the set of reals, determine whether each of the following relations is 

reflexive, symmetric, antisymmetric, transitive? 

 

(a) R1 aRb means that a is less than b; 

(b) R2 aRb means that a = b; 

(c) R3 aRb means that a is not equal to be. 

(d) R4 aRb means that a is not equal to b. 

 

10.  In problem 9, which of the relations is an equivalent relation? 
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Activity 2 

 

1. Consider the set A =   {1, 2, 3, 4, 5, 6}. 

a.  List the elements of the relation R1 on A where aRb means, “a divides b.” 

b.  List the elements of the relation R2 on A where aRb means, “a is less than or equal 

b.” 

 

2. Consider the relations R1 and R2 in problem 1, 

a. What is R1-1?  List ordered pairs. 

b. What is R2-1?  List ordered pairs. 

 

3. Consider the relations R1 and R2 in problem 1, 

a. What is R1  R2?  List 

b. What is R1  R2?  List 

 

4. Consider the set A = {1, 2, 3, 4} and the relation R = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 

1)} and the relation S = {(2, 1), (3, 1), (3, 2), (4, 2)}.  Write S R as a set of ordered 

pairs. 

 

5.  Give an example of a relation on the set A = {1, 2, 3, 4} such that 

 a.   R1 is both symmetric and antisymmetric. 

 b.   R2 is neither symmetric nor antisymmetric. 
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Theme III: Organizing and Representing Numbers and Data 

 

Lesson 3: Functions 

 

 

 

 

 

 
A function from a set A to a set B, is a relation from A to B in which each element in A 

is assigned exactly one element in B. The elements in A are called the domain of the 

function. The elements in B to which the elements in A are assigned is called the images 

or codomain of the elements of A or the range of the function. Functions are usually 

denotes by lowercase letters like f, g, h, …..q, …..  For example: 

 

  f: A              B 

      a               f(a) 

 

denotes that “f is a function from A to B” where ‘a is assigned to f(a) , an element of B.” 

 

Example 

 

Which of the following relations from A to B are functions from A to B?  

 A = {1, 2, 3}  B = {1, 2, 3, 4, 5} 

(a) {(1, 2), (2, 3), (3, 5)};  (b) {(1, 1), (2, 1), (3, 1)} 

(c) {(1, 3), (1, 5), (3, 5)};  (d) {(1, 2), (2, 4)} 

Functions may be expressed in different ways, as relations are expressed in different 

ways. Specifically, whenever a function, say f, is given by a formula in terms of a 

variable x, it is usually assumed that the domain of the functions is R, the set of real 

numbers, and that the images of f, the range of f, are elements of R.  

 

Example 

 

Let y be a function on R, the set of real numbers, and we define g(x) = x2 – 1, find g(2), 

g(0), g(1), and g(a). 

 

Solution  

 

g(2)  = 22 – 1 = 4 - 1 = 3;      g(0) = 02 – 1 = -1;     g(-1) = (-1)2 – 1 = 1 – 1 = 0;  

g(a) = a2 – 1 = g(a + 1) = (a + 1)2 – 1 = (a2 – 2a + 1) – 1 = a2 + 2a 

 

 

 

 

         Do You Know? 
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Remark: There is an important connection shared by functions and relations: Every 

function is a relation but not every relation is a function. Thus, functions have all the 

properties that relations have.  

 

One-to-One, Onto, and Invertible Functions 

 

A function f: A         B is said to be one-to-one (also written 1-1) if different elements in 

the domain A have distinct images. Another way of saying the same thing is that f is one-

to-one if f(a) = f(a’)  implies a = a’. 

 

A function f: A         B is said to be an onto function if each element of B is the image of 

some element of A. In other words, f: A         B is onto if the image of f is the entire 

codomain (example, if f(A) = B). In such a case, we say that f is a function from A onto B 

or that f maps A onto B.  

 

A function f: A         B is invertible if there is a function g: B         A such that  

g{f(a)} = u  and  g{k(a)} = a. In general, there may not be such a function. But if there is 

one, then it is unique, it is denoted by f—1, and f is said to be invertible. The following 

theorem gives simple criteria for invertibility. 

 

Theorem A: A function f: A         B is invertible if and only if f is both one-to-one and 

onto.  

 

If f: A         B is one-to-one on onto, then f is called a one-to-one correspondence 

between A and B. This terminology comes from the fact that each element of A will then 

correspond to a unique element of B and vice versa. f-1simply reverses the direction of 

this correspondence.  

 

Different Types of Functions 

 

(a) One-to-one, not onto     (b)   Onto, not one-to-one 

 

     

 

 

 

 

 

 

 

 

 

a • 

b• 

c• 

•1 

•2 

•4 

•3 

a• 

b• 

d• 

c• 

•1 

•3 

•2 
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(c) One-to-one, and onto   (d)   Neither one-to-one nor onto 

 

 

 

 

 

 

 

 

 

 

 
(d) Not a function 

 

 

 

 

 

 

 

 

 

 

 

It might be interesting to include in this lesson some special mathematical functions. 

 

Floor and Ceiling Functions 

 

Let x be any real number. Then x lies between two integers called the floor and the 

ceiling of x. Specifically, 

 

     x  , called the floor of x, denotes the greatest integer that does not exceed x.  

     x  , called the ceiling of x, denotes the least integer that is not less than x.  

 

If x is itself an integer, then    x   =   x  , otherwise    x   + 1 =   x  . 

 

 

 

 

 

 

a• 

b• 

c• 

d• 

•1 

•4 

•3 

•2 

•4 

 

•3 

•2 

•1 

d• 

c• 

b• 

a• 

a• 

b• 

c• 

•1 

•4 

•3 

•2 
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Integer and Absolute Value Functions 

 

Let x be any real number. The integer value of x, written INT(x), converts x into an 

integer by deleting (truncating) the fractional part of the number. Thus,  

 

 INT(3.14) = 3,    INT(√5) = 2,    INT(-8.5) = -8 

 

The absolute value of the real number x, written ABS(x) or │x│, is defined as the 

greater of x or –x. Hence ABS(0) = 0, and for x ≠ 0, ABS(x) = x or ABS(x) = -x, 

depending on whether x is positive or negative. Thus,  

 

 │-15│= 15,  │7│= 7,  │-3.33│= 3.33 

 

We note that if the │x│= x and, for x ≠ 0, then │x│ is positive. 

 

Composition of Functions  

 

Let g be a function from the set A to the set B and let f be a function from the set B to the 

set C. The composition of functions f and g, denoted by f ○ g, is defined by  

 

(f ○ g)(a) = f (g(a)).  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure I The composition of the Functions f and g. 

 

 

 

 

 

 

f ○ g 

A 

f ○ g 

g 

g 

f 

f 

a 
• 

B 

g(a) 
• 

C 

f(g(a)) 
• 

A 
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Example 

 

 Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = c,  and g(c) 

= a. let f  be the function from the set {a, b, c} to the set {1, 2, 3} such that 

 f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of f and g, and what is the 

composition of g and f?  

 

Solution  

 

The composition of f ○ g is defined by (f ○ g)(a) = f(g(a)) = f(b) = 2,  

(f ○ g)(b) = f(g(b) = f(c) = 1, and (f ○ g)(c) = f(g(c)) = f(a) = 3. 

 

Note that g ○ f is not defined, because the range of f is not a subset of the domain of g.  

 

Example 

 

Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 

2x + 3 and g(x) = 3x + 2. What is the composition of f and g? what is the composition of 

g and f? 

 

Solution    

 

Both the compositions f ○ g and g ○ f  are defined. Moreover,  

 (f ○ g)(x) = f(g(x) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7 

and  

 (g ○ f )(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11 

 

Remark Note that even though f ○ g and g ○ f are defined for the functions f and g in the 

example, f ○ g and g ○ f are not equal. In other words, the commutative law does not hold 

for the composition of functions.  

 

The Graphs of Functions 

 

We can associate a set of pairs in A × B to each function from A to B. This set of pairs is 

called the graph of the function and is often displayed pictorially to aid in understanding 

the behavior of the function.  

 

Definition  

 

Let f be a function form the set A to the set B. The graph of the function f is the set of 

ordered pairs [(a, b)│a € A and f(a) = b}. 

From the definition, the graph of a function f from A to B is the subset of A × B 

containing the ordered pairs with the second entry equal to the element of B assigned by f 

to the first entry. 
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Example   

 

Display the graph of the function f(n) = 2n + 1 from the set of integers to the set of 

integers. i.e f: Z         Z. 

 

Solution 

 

The graph of f is the set of ordered pairs of the form (n, 2n + 1) where n is an integer. 

This graph is displayed in Figure III. 

 

Example   

 

Display the graph of the function f(x) = x2 from the set of integers to the set of integers. 

i.e. f: Z         Z 

 

Solution  

 

The graph of f  is the set of ordered pairs of the form (x, f(x)) = (x, x2) where x is an 

integer. This graph is displayed in Figure III.  

 

    •    

        

   •     

        

  •      

        

 •       

        

        

Figure II The Graph of the Function f(n) = 2n + 1 from Z to Z.             

         

         

         

         

         

         

         

         

         

     (0,0)    
 

 

Figure III The Graph of f(x) = x2 from Z to Z.  
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Activity 1 
 

1.  Which of the following set of ordered pairs represent a function? Explain your 

answer. 

(a) {(1, 4), (2, 3), (3, 2), (5, 3)} (b) {(2, 5), (4, 1), (3, 3), (2, 2)} 
 

2. Which of the following set of ordered pairs represent a function? Explain your 

answer.  

(a) {(4, 2), (1, 1), (0, 0), (4, -2)} (b) {(1, 3), (2, 3), (3, 3), (4, 3)} 
 

3. Which of the following arrow diagrams represent a function? 

(a)                                                       (b)   

 

 

 

 

 

 

 

(c)                                                       (d) 

 

 

 

 

 

 
 

4. Given the set of A = {1, 2, 3, 4, 5}; let f:A       A. For each function given, draw 

the set A twice, showing each element of A, then draw arrows from the elements 

in the first set to those in the second that represent the function f.  

(a) F(x) = 6 – x (b) f(x) = (x – 3)2 (c) f(x) = 2x – 3 
 

5. Write each function in Problem 3 as a set of ordered pairs. 
 

6. Which of the functions in Problem 3 is a one-to-one function? 
 

7. Given each of the following rules for f(x), compute f(-1), f(2), f(3) for each f(x). 
 

(a) f(x) = 3x -5     (b) f(x) = 10x – 2x      (c) f(x) = x2- x         (d) f(x) = 3 
 

8. Determine whether each of the functions in problem 7, with domain  

{-1, 0, 1, 2, 3}, is one-to-one. 
 

9. Draw a graph of each of the functions in problem 7 assuming the domain is  

{-1, 0, 1, 2, 3} in each case.  
 

10.  Which of the following functions from Z to Z is one-to-one? onto?  

(a) f(n)= n – 1         (b) f(n) = n2 + 1          (c) f(n)= n3                   (d) f(n0 = [n/2] 

1• 

2• 

3• 

4• 

5• 

1 

2 

3 

4 

5 

1• 

2• 

3• 

4• 

5• 

1 

2 

3 

4 

5 

1• 

2• 

3• 

4• 

5• 

1 

2 

3 

4 

5 

1• 

2• 

3• 

4• 

5• 

1 

2 

3 

4 

5 
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Activity 2 

 

1. Which of the following tables define y as a function of x? 

(a)                                                (b)   

 

(c)                                                 (d)  

 

 

2. Let S = {-1, 0, 2, 4, 7}. Find f(S) if 

(a) f(x) = 1 (b)  f(x) = 2x + 1    (c) f(x) = [x/5] (d) f(x)=  (x2+ 1)/3 

 

3. Let f(x) = 2x. What is  

(a) f(Z) (b) f(N) (c) f(R)  ? 

 

4. Give an example of a function from N to N that is  

(a) one-to-one but not onto. 

(b) onto but not one-to-one. 

(c) both onto and one-to-one (but different from the identity function). 

(d) neither one-to-one or onto. 

 

5. Find f ○ g and g ○ f where f(x) = x2 + 1  and g(x) = x + 2 are functions from  

R to R.  

 

6. – 10.  

Identify or create five (5) problems on functions and then solve the problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 1 2 3 2 

y 4 3 2 1 

 

x 1 -1 3 0 

y 1 3 2 1 

 

x -2 -1 1 2 

y 4 1 1 4 

 

x 1 1 1 1 

y 1 2 3 4 
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Lesson 4: Graphs 

 

 

 

 

 
Graphs are discrete mathematical structures consisting of vertices (nodes or points) and 

edges (line segments) that connect these vertices. There are many different types of 

graphs based on the kind, type, and number of vertices and edges. Problems in many 

areas can be solved using graphs as models. This lesson will begin by introducing, 

defining, and giving examples of some of the most frequently used graphs.  

 

Definition 1 A simple undirected graph G = (V, E) consists of V, a nonempty set of 

vertices, and E, a set of unordered pairs of distinct elements of V called edges.  

 

We cannot use a pair of vertices to specify an edge of a graph when multiple edges are 

present. This makes the formal definition of multigraphs somewhat complicated.  

 

Definition 2 A undirected multigraph G = (V, E), which consists of a set V of vertices, 

a set E of undirected edges, and a function f from E to {{u, v} │u, v € V, u ≠ v}. The 

edges e1 and e2 are called multiple or parallel edges if f(e1) = f(e2).  

 

Definition 3 A pseudograph or multigraph with a loop is G = (V, E), which consists of a 

set V of vertices, a set E of edges, and a function f from E to {{u, v} │u, v € V}. An edge 

is a loop if f(e) = {u, u} = {u} for some u € V. 

 

The reader should note that multiple edges in a pseudograph are associated to the same 

pair of vertices. However, we will say that {u, v} is an edge of a graph G = (V, E) if there 

is al least one edge e with f(e) = {u, v}. We will not distinguish between the edge e and 

the set {u, v} associated to it unless the identity of individual multiple edges is important.  

 

To summarize, pseudographs are the most general type of undirected graphs since they 

may contain loops and multiple edges. Multigraphs are undirected graphs that may 

contain multiple edges but may not have loops. Finally, simple graphs are undirected 

graphs with no multiple edges or loops.  

 

Definition 4 A directed graph G = (V, E) consists of a set of vertices V and a set of 

edges E that are ordered pairs of elements V.  

 

 

 

 

 

         Do You Know? 
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Definition 5 A directed multigraph G = (V, E) consists of a set V of vertices, a set E of 

edges, and a function f from E to {(u, v) │u, v € V}. The edges e1 and e2 are multiple 

edges if f(e1) = f(e2).  

 

The reader should note that multiple directed edges are associated to the same pair of 

vertices. However, we will say that (u, v) is an edge of G = (V, E) as long as there is at 

least one edge e with f(e) = (u, v). We will not make the distinction between the edge e 

and the ordered pair (u, v) associated to it unless the identity of individual multiple edges 

are important. This terminology for the various types of graphs makes clear whether the 

edges of a graph are associated to ordered or unordered pairs, whether multiple edges are 

allowed, and whether loops are allowed.  

Table A                                                 Types of Graphs 

Type Edges Multiple Edges Allowed? Loops Allowed? 

Simple graph Undirected No No 

Multigraph Undirected Yes No 

Pseudograph Undirected Yes Yes 

Directed graph Directed No Yes 

Directed multigraph Directed Yes Yes 
 

Figure I Some Pictures of Graphs 
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A                              B 
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In a graph G(V, E), vertices u and v are said to be adjacent if there is an edge e={u, v}. 

In such a case, u  and v are called the endpoints of e, and e is said to connect u and v. 

Also, the edge e is said to be incident on each of its endpoints u and v. Graphs are 

pictured by diagrams in the plane in a natural way. Specifically, each vertex v in V is 

represented by a dot (or small circle), and each edge e = {v1, v2} is represented by a line 

or curve which connects its endpoints v1 and v2. 

 

Subgraphs 

 

Consider a graph G = G(V, E). A graph H = H(V′, E′) is called a subgraph  of G if the 

vertices and edges of H are contained in the vertices and edges of G, that is, if V′   V 

and E′   E. In particular: 

 

•  A subgraph H(V′, E′) of G(V, E) is called the subgraph induced by its vertices V′ if its   

edge set E′ contains all edges in G whose endpoints belong to vertices in H.  

•  If v is a vertex in G, the G – v is the subgraph of G obtained by deleting v from G and 

deleting all edges in G which contain v.  

•  If e is an edge in G, then G – e is the subgraph of G obtained by simply deleting the 

edge e from G.  

 

Degree of a Vertex (undirected graph) 

 

The degree of a vertex v in a graph G, written deg (v), is equal to the number of edges in 

G which contain v, that is, which are incident on v. Since each edge is counted twice in 

counting the degrees of the vertices of G, we have the following simple but important 

result.  

 

Theorem A The sum of the degrees of the vertices of an undirected graph G is equal to 

twice the number of edges in G.  

 

A vertex of degree zero is called an isolated vertex. Directed graphs have in-degrees and 

end-degree.  

 

Isomorphic Graphs 

 

Graphs G = G(V, E) and G* = H(V*, E*) are said to be isomorphic if there exists a one-

to-one correspondence f: V         V* such that {u, v} is an edge of G*. Normally, we do 

not distinguish between isomorphic graphs (even though their diagrams may “look 

different”).  
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Figure II gives ten graphs pictured as letters. We note that F and T are isomorphic 

graphs. M, S, V, and Z are also isomorphic.  

 

Figure II 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Paths; Connectivity 

 

A path in a multigraph G consists of an alternating sequence of vertices and edges of the 

form 

v0, e1, v1, e2, v2, … , en-1, vn-1, en, vn 

 

where each edge ei contains the vertices vi-1 and vi (which appear on the sides of ei  in the 

sequence). The number n of edges is called the length of the path. When there is no 

ambiguity, we denote a path by its sequence of vertices (v0, v1,...,vn). The path is said to 

be closed if v0 = vn. Otherwise, we say the path is from v0  to vn,  or between v0 and vn, or 

connects v0  to vn. 

 

A simple path is a path in which all vertices are distinct. A path in which all edges are 

distinct will be called a trail. A cycle is a closed path of length 3 or more in which all 

vertices are distinct except v0 = vn. A cycle of length k is called a k-cycle 

  

By eliminating unnecessary edges, it is not difficult to see that any path from a vertex u to 

a vertex v can be replaced by a simple path from u to v. We state this result formally.  

 

Theorem B There is a path from a vertex u to a vertex v if and only if there exists a 

simple path from u to v.  
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Connected Graph – Connected Components – Isolated Vertex 

 

A graph G, is connected if there is a path between any two of its vertices. The graph in 

Figure III, is connected, but the graph in Figure IV is not connected since, for example, 

there is no path between vertices D and E. 

 

 

 

 

 

 

 

 

Suppose G is a graph. A connected subgraph H of G is called a connected component of 

G if H is not contained in any larger connected subgraph of G. It is intuitively clear that 

any graph G can be partitioned into its connected components. For example, the graph G 

in Figure IV has three (3) components DEF, JK, and L.  

Labeled and Weighted Graphs 

A graph G is called a labeled graph if its edges and/or vertices are assigned data of one 

kind or another. In particular, G is called a weighted graph if each edge e of G is 

assigned a nonnegative number w(e) called the weight or length of v. Figure V shows a 

weighted graph where the weight of each edge is given in the obvious way. The weight 

(or length) of a path in such a weighted graph G is defined to be the sum of the weights of 

the edges in the path. One important problem in graph theory is to find a shortest path, 

that is, a path of minimum weight (length), between any two given vertices. The length of 

a shortest path between P and Q is 14.  

. 

 

 

 

 

 

 

 

Complete, Regular, Bipartite and Tree Graphs 

 

There are many different types of graphs. This section considers four of them: complete, 

regular, bipartite, and tree graphs. 

 

 

 

 

 

 

Figure III Figure IV 

D 

E 

F 

Figure V 
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Complete Graphs 

A graph g is said to be complete if every vertex in g is connected to every other vertex in 

G. Thus a complete graph G must be connected. The complete graph with n vertices is 

denoted by Kn. Figure VI shows the graphs K1 through K5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regular Graphs  

 

A graph G is regular of degree k or k-regular if every vertex has degree k. In other 

words, a graph is regular if every vertex has the same degree.  

The connected regular graphs of degrees 0, 1, or 2 are easily described. The connected   

0-regular graph is the trivial graph with one vertex and no edges. The connected 1-regular 

graph is the graph with two vertices and one edge connecting them. The connected 2-

regular graph with n vertices is the graph which consists of a single n-cycle. See Figure 

VII.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• 

 •      • 

 •      • 

      •             

•           • 

  •      • 

K1 K2 K3 

K5 

K4 

     • 

 •      • 
•        • 

•        • 

 
(i) 0-regular (ii) 1-regular 

 

(iii) 2-regular 

 

Figure W 

Figure VI • 
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Bipartite Graphs 

 

A graph G is said to be bipartite if its vertices V can be partitioned into two subsets M 

and N such that each edge of G connects a vertex of M to a vertex of N. By a complete 

bipartite graph, we mean that each vertex of M is connected to each vertex of N; this 

graph is denoted by Km,n where m is the number of vertices in N, and , for 

standardization, we will assume m ≤ n. Figure VIII shows the graphs K2,3, K3,3, K2,4. 

Clearly, the graph Km,n. has mn edges.  

 

 

 

 

                                  

 

 

 

 

 

 

 

Tree Graphs 

 

A graph T is called a tree if T is connected and T has no cycles. Examples of trees are 

shown in Figure IX.  

 

Any connected graph that contains no simple circuits is a tree. Trees often defined as 

undirected graphs with the property that there is a unique simple path between every pair 

of vertices.  

 

Figure IX Examples of Trees and Graphs That Are Not Trees 
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Activity 1 

 
1. In Figure I, which graphs are undirected graphs?  
 

2. In Figure I, which graphs are directed graphs? 
 

3.  In Figure I, which graphs have loops? For each such graph, identify the vertex          

     where the loop is located. 
 

4.  In Figure I, Graph G3, what is the degree of Vertex A? B? C? D? 
 

5.  In Figure I, Graph G3, Name the vertices that are adjacent to the following vertex: 
     

    (a) Vertex A: ___ ___ ___ ___  (b) Vertex B: ___ ___ ___ ___  

    (c) Vertex C: ___ ___ ___ ___  (d) Vertex D: ___ ___ ___ ___  

 

6.  In Figure II, Graph G2, name the vertices that are incident to the following edge: 
     

     (a) Edge e1: ___ ___ ___  (b) Edge e2: ___ ___ ___ 

     (c) Edge e3: ___ ___ ___  (d) Edge e4: ___ ___ ___ 

     (e) Edge e5: ___ ___ ___ 

 

7.  List two (2) reasons why in Figure II,  
     

     (a) A and R are isomorphic.  (b) R and X are isomorphic. 

     (c) F and T are isomorphic. 

 

8.  In Figure III, list two (2) paths from P1 to P3 
     

     (a) that are length 2.         (b) that are length 3.    (c) that are length 4. 

 

9.  In Figure III, list a path that is  
     

     (a) closed and not a cycle.  (b) a cycle. 

     (c) a simple path.    (d) a trail. 

 

10.  In Figure III, identify 
     

     (a) two connected graphs.   (b) a graph with two (2) components 

     (c) an isolated vertex 
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Activity 2 

 
1.  In Figure IV,  
 

     (a) How many paths can you identify from A4 to Q? 

     (b) What is the length of each path? 

     (c) What is the shortest path from A4 to Q? What is its length? (List the vertices.) 

     (d) What is the longest path from A4 to Q? What is its length? (List the vertices.) 

 

2.  See Figure V, draw K6. 

 

3. See Figure VI, draw three (3) 4-regular graphs. 

 

4.  See figure VII, draw two (2) bipartite graphs, 
 

     (a) K1,5 (b) K2,5 

 

5.  In Figure VIII, 
 

     (a) Which graphs are trees? 

     (b) Which graphs are not trees? 

     (c) In G1, what one edge could you remove to create two subgroups H1 and H2? 

     (d) List the vertices and edges of H1, then of H2. 
 

6. – 10. 

     Identify or create five (5) problems about graphs, then solve them.  
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Theme III: Organizing and Representing Numbers and Data 

 

Lesson 5: Matrices 
                                                                                                  

                                                                                                  

  

  
 

 

 

Matrices are mathematical structures that are used in many academic disciplines and they 

are used in many everyday applications.  By definition, a matrix is a rectangular array of 

numbers or data.  Example A:  The matrix A = 















 −

1753

6402

7531

 

A matrix with m rows and n columns is called an m x n matrix.  The plural word for 

matrix is matrices.  A matrix with the same number of rows as columns (an n x n matrix) 

is called a square matrix. 

 

Two matrices are the same size if each has the same number of rows as columns. 

 

Two matrices are equal if they are the same size and the corresponding entries in every 

position are equal. 

 

We now introduce some more properties about matrices.  Boldface uppercase letters will 

be used to represent matrices. 

 

Definition 2  Let 

 

A = [aij] 

 

The ith row of A is the 1 x n matrix [ai1, ai2, …., ain].  The jth column of A is the n x 1 

matrix 

 

 

 

The (i, j)th element  or entry of A is the element aij, that is, the number in the ith row and 

jth column of A.  a convenient shorthand notation for expressing the matrix A is to write 

a = [aij], which indicates that A is the matrix with its (i, j)th element equal aij. 

 

       Do You Know? 
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A matrix having only one row is called a row matrix (or row vector).  Similarly, a matrix 

having only one column is called a column matrix (or column vector). 

 

Since many matrices have as their entries numbers, there are well-define arithmetic 

operations for matrices. 

 

4. Addition of Matrices.  If A = (ajk) and B = (bjk) have the same order (size) we 

define the sum of A and B and A + B = (ajk + bjk). 

 

 Example 1.  If A = 








− 203

412
, B = 







 −

312

153
 then 

 

  A + B = 








+++−

+−+

321023

145132
 =  









−

−

511

545
 

 

Note that the commutative and associative laws for addition are satisfied by matrices, i.e. 

for any matrices A, B, C of the same size (or order) 

 

  A + B = B + A, A + (B + C) = (A + B) + C 

 

2.  Subtraction of Matrices.  If A = (ajk), B = (bjk) have the same size (order), we define 

the differences of A and B as A – B = (ajk – bjk). 

 

Example 2.   If A and B are the matrices of Example 1, then 

 

  A – B = 








−−−−

−+−

321023

145132
 = 









−−−

−

115

361
 

 

5. Multiplication of a Matrix by a Number.  If A = (ajk) and   is any number [or 

scalar], we define the product of A by c as cA = Ac = (cajk). 

 

Example 2.  If A is the matrix of Example 1 and   = 4, then 

 

  cA = 4 








− 203

412
 = 









− 8012

1648
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4. Multiplication of Matrices. If A = (ajk) is an m n matrix while B = (bjk) is an n p 

matrix, then we define the product A B or AB of A and B as the matrix C = (cjk) where 

     

    Cjk = 
=

n

l 1

ajlblk 

and where C is of order m p.  

 

Note that matrix multiplication is defined if and only if the number of columns of A is the 

same as the number of rows of B. Such matrices are sometimes called compatible (for 

multiplication).  

 

Example 4 

    Let A = 








− 2

4

0

1

3

2
, D =

















−

2

1

5

4

2

3

.    Then  

    AD= 








+−+−

+−+

++−

++

)2)(2()1)(0()5)(3(

)2)(4()1)(1()5)(2(

)4)(2()2)(0()3)(3(

)4)(4()2)(1()3)(2(
 = 









−− 11

17

1

24
  

Note that the general AB ≠ BA. i.e. the commutative law for multiplication of matrices is 

not satisfied in general. However, the associative and distributive laws are satisfied, i.e. 

 

 A(BC) = (AB)C,  A(B + C) = AB + AC, (B + C)A = BA + CA 

 

A matrix A can be multiplied by itself if and only if it is a square matrix.  

The product A A can in such case be written A2. Similarly we define powers of a square 

matrix, i.e. A3 = A A2, A4 = A A3, etc. 

 

5. Transpose of a Matrix. If we interchange rows and columns of a matrix A, the 

resulting matrix is called the transpose of A and is denoted by AT.  

In symbols, if A = (ajk) then AT = (akj).  

 

Example 5 

  The transpose of A = 








− 2

4

0

1

3

2
 is  

     AT = 














 −

2

0

3

4

1

2

 

We can prove that 

 

  (A + B)T = AT + BT, (AB)T = BTAT, (AT)T = A 
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6.  Symmetric and Skew-Symmetric Matrices. A square matrix A is called symmetric 

if AT = A and skew-symmetric if AT = -A. 

 

Example 6 

 The matrix E = 






 −

− 3

4

4

2
is symmetric while F = 







 −

0

2

2

0
is skew-symmetric. 

7. Unit Matrix. A square matrix in which all elements of the principal diagonal are equal 

to 1 while all other elements are zero is called the unit matrix and is denoted by I. An 

important property of I is that 

  

  AI = IA = A, In = I, n = 1, 2, 3, … 

 

The unit matrix plays a role in matrix algebra similar to that played by the number one in 

ordinary algebra. 

 

8.  Zero or Null Matrix. A matrix whose elements are all equal to zero is called the null 

or zero matrix and is often denoted by O or simply 0. For any matrix A having the same 

order as 0 we have 

 

  A + 0 = 0 + A = A 

 

Also if A and 0 are square matrices, then  

 

  A0 = 0A = 0 

 

The zero matrix plays a role in matrix algebra similar to that played by the number zero 

of ordinary algebra.  

 

9.  Principal Diagonal and Trace of a Matrix. If A = (ajk) is a square matrix, then the 

diagonal which contains all elements ajk  for which j = k is called the principal or main 

diagonal and the sum of all such elements is called the trace of A.  

 

Example 7 

 

  The principal or main diagonal of the matrix 

    

    
















−

− 2

2

0

4

1

2

1

3

5

 

 

             is {5, 1, 2}, and the trace of the matrix is 5 + 1 + 2 = 8. 

A matrix for which ajk = 0 when j ≠ k is called a diagonal matrix.  
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Matrices and Graphs 

 

There are two types of matrices commonly used to represent graphs. One type is an 

adjacency matrix. The other type is an incidence matrix. We will only discuss the 

adjacency matrix. An adjacency matrix is defined as a matrix whose rows and columns 

represent the vertices of a matrix and that the aij entry is a 1 or 0, depending upon 

whether or not the ith vertex is adjacent to the jth vertex.  

 

Example 8  

 

Use an adjacency matrix to represent the graph shown in Figure A. 

         

Figure A                                                                     dcba  

A Simple Graph                                                      





















0

0

0

1

0

0

1

1

0

1

0

1

1

1

1

0

d

c

b

a

 

Solution 

 

We order the vertices as a, b, c, d. The matrix representing this graph is  

                              

It is interesting to observe that the adjacency matrix of a graph is unique; it only defines 

one graph or a graph isomorphic to it. Thus, given an adjacency matrix, one can 

determine the graph (or isomorphic graph) that it represents. 

 

Example 9  

 

Draw a graph with the adjacency matrix 

                             dcba  

  





















0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

d

c

b

a

 

with respect to the ordering vertices a, b, c, d. 

 

Adjacency matrices can also be used to represent undirected graphs with loops and with 

multiple edges. A loop at the vertex ai is represented by a 1 at the (i, i)th position of the 

adjacency matrix. When multiple edges are present, the adjacency matrix is no longer a 

zero-one matrix, since the (i, j)th entry of this matrix equals the number of edges that are 

associated to {ai, aj}. All undirected graphs, including multigraphs and pseudographs, 

have symmetric adjacency matrices.  

•            • 

 

 

•            • 

 

 

a 

d c 

b 

•            • 

 

 

•            • 

 

 

a 

d c 

b 

Figure B  

Graph with the Given Adjacency Matrix 
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Activity 1 
 

Given  A = 






 −

3

1

4

2
,  B = 









−

−

4

1

2

1
, C = 









−− 1

4

2

1
   

 
1. Find    (a)  A + B (b) A – B 

 

2. Find    (a) 2A – 3C (b) 3A + 2B – 4C 

 

3. Find    (a) AB =     (b) BA =  

Does AB = BA? 

 

4. Find  (a) (AB)C =  (b) A(BC) =  

Is (AB)C = A(BC)? 

 

5. Given A = 
















4

5

0

4

4

1

4

3

0

4

2

1

 What is AT? 

 

6. What is A · AT? 

 

7. Write as a matrix 

(a) A, the 5 x 5 zero matrix. 

(b) B, the 5 x 5 identity matrix. 

 

• A = 






 −

5

3

4

2

0

1
,   B = 









−− 7

8

3

6

1

4
, C = 

















0

0

4

8

6

3

0

0

2

7

5

1

 

 

8. Use A, B, and C from (•). What is (AT)T, (BT)T, and (CT)T? What general 

conclusion do you think might be  true? 

 

9. Use A and B from (•). Calculate (A + B)T and (AT + BT); are they the same? 

 

 

10. Use A and C from (•). Calculate (AC) T and AT CT; are they the same? 
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Activity 2 

 

Given A = 

















4

2

1

2

1

1

1

0

1

                         C= 

















−

−

−

− 1

2

1

1

3

2

1

2

0

 

 

 B =  















 −

−

8

7

5

7

6

3

5

3

2

   D = 















 −

−

−

0

5

4

5

0

3

4

3

0

 

 

 
1. What are the elements of the principal diagonal of  

(a) Matrix A? (b) Matrix B?  (c) Matrix C?  (d) Matrix D? 

 

2. What are the elements of the other diagonal of 

(a) Matrix A? (b) Matrix B?  (c) Matrix C?  (d) Matrix D? 

 

3. What is the trace of  

(a) Matrix A? (b) Matrix B?  (c) Matrix C?  (d) Matrix D? 

 

4. Which matrix, if any, is symmetric? Skew-symmetric? 

 

5.  Multiply A · C and get the matrix D (D = AC). Based on D, what would you say 

about A and C? 

 

6. – 10.  

Identify, create, or construct five (5) problems involving matrices and then solve 

them.  
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Theme IV: Logic and Mathematical Reasoning 

 

Lesson 1: Propositions 
 

 
 

 

 

The rules of logic give precise meaning to mathematical statements. These rules are used 

to distinguish between valid and invalid mathematical reasoning. Since a major goal of 

this theme is to teach the reader how to understand and how to do correct mathematical 

reasoning, we begin our study of this theme with an introduction to logic. In addition to 

its importance in understanding mathematical reasoning, logic had numerous applications 

in many other ways. These rules are used in the design of computer circuits, the 

construction of computer programs, the verification of the correctness of arguments in 

legal areas, and in many other ways.  

 

Propositions 

 

We begin this Theme with an introduction to the basic building blocks of logic- 

propositions. A proposition is a statement that is either true or false, but not both.  

 

Example 1  

 

All the following statements are propositions.  

1. Washington, D.C., is the capitol of the United States of America. 

2. Paris is the capital of France. 

3. 1 + 1 = 2. 

4. 2 + 2 = 3. 

 

Propositions 1, 2, and 3 are true, whereas 4 is false. 

 

Some sentences that are not propositions are given in the next example. 

 

Example 2 

 

Consider the following sentences.  

1.  What time is it? 

2.  Read this carefully. 

3.  x + 1 = 2. 

4.  x + y = z. 

 

Sentences 1 and 2 are not propositions because they are not statements. Sentences 3 and 4 

are not propositions because they are neither true nor false, since the variables in these 

open sentences have not been assigned values.  

 

 

       Do You Know? 
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Lowercase letters are used to denote propositions. The conventional letters used for 

propositions are p, q, r, s, …. The truth value of a proposition is true, denoted by T, if it 

is a true proposition and false, denoted by F, if it is a false proposition. 

 

We now turn our attention to methods for producing new propositions from those that we 

already have. Many mathematical statements are constructed by combining one or more 

propositions. New propositions are called compound propositions. They are formed 

from existing propositions using logical operators.  

 

Definition 1 Let p be a proposition. The statement 

 

“It is not the case that p.” 

 

is another proposition, called the negation of p. The negation of p is denoted by ¬p. 

The proposition ¬p is read “not p.” 

 

Find the negation of the proposition: “Today is Friday.” “Today is not Friday.” 

 

Definition 2 Let p and q be propositions. The proposition “p and q,” denoted by p q, is 

the proposition that is true when both p and q are true and false otherwise. The 

proposition p q is called the conjunction of p and q.  

 

Example 3 Find the conjunction of the propositions p and q where p is the proposition 

“Today is Friday.” And q is the proposition “It is raining today.” 

 

Solution The conjunction of these propositions, p q, is the proposition “Today is Friday 

and it is raining today.” This proposition is true on rainy Fridays and is false on any day 

that is not a Friday and on Fridays when it does not rain. 

 

Definition 3 Let p and q be propositions. The proposition “p or q,” denoted by p q, is 

the proposition that is false when p and q are both false and true otherwise. The 

proposition p q is called the disjunction of p and q.  

 

The use of the connective or in a disjunction corresponds to one of the two ways the 

word or is typically used, namely in an inclusive way. A disjunction is true when either 

of the two propositions in it is true or when both are true. For instance, the inclusive or is 

being used in this statement: 

 

“Students who have taken calculus or physics can take this class.” 

 

What is meant is that students who have taken both calculus and physics can take the 

class, as well as students who have taken just one of the two subjects. 
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Logic 

 

Similarly, when a menu at a restaurant states, “Soups or salad comes with an entrée,” the 

restaurant almost always means that customers can have either soup or salad, but not 

both. Hence, this is an exclusive, rather than an inclusive, or.  

 

Example 5 What is the disjunction of p and q, p q, is the proposition  

 

         “Today is Friday or it is raining today.” 

 

This proposition is true on any day that is either a Friday or a rainy day (including rainy 

Fridays). It is only false on days that are not Fridays when it also does not rain. 

 

As we previously remarked, the use of the connective or in a disjunction corresponds to 

one of the two ways the word or is typically used, namely in an inclusive way. Thus, a 

disjunction is true when either of the two propositions in it is true or when both are true. 

Sometimes, we use or in an exclusive sense. When the exclusive or is used to connect the 

propositions p and q, the proposition “p or q (but not both)” is obtained. This proposition 

is true when p is true and q is false, or vice versa, and it is false when both p and q are 

false and when both are true. 

 

Definition 4 Let p and q be propositions.  The exclusive or of p and q, denoted by p q, 

is the proposition that is true when exactly one of p and q is true and is false otherwise.  

 

Definition 5 Let p and q be propositions. The implication p →q is the proposition that is 

false when p is true and q is false and true otherwise. In this implication p is called the 

hypothesis (or premise) and q is called the conclusion (or consequence).  

 

Because implications arise in many places in mathematical reasoning, a wide variety of 

terminology is used to express p →q. Some of the more common ways of expressing this 

implication are: 

▪ “if p, then q”  

▪ “p implies q” 

▪ “if p,  q” 

▪ “p only if q” 

▪ “p is sufficient for q” 

▪ “q if p” 

▪ “q whenever p” 

▪ “q is necessary for p”  

 

Note that p →q is false only in the case that p is true but q is false, so that it is true when 

both p and q are true, and when p is false (no matter what truth value q has).  
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The way we have defined implications is more general than the meaning attached to 

implications in the ordinary sense. For instance, the implication 

 

“If it is sunny today, then we will go to the beach.” 

 

is an implication used in normal language, since there is a relationship between the 

hypothesis and the conclusion. Further, this implication is considered valid unless it is 

indeed sunny today, but we do not go to the beach.  

 

Logic 

 

There are some related implications that can be formed from p →q. the proposition   

q →p is called the converse of p →q.  

~p →~q is called the inverse of p→q. The contrapositive of p →q is the proposition  

~q →~p.  

 

Example 7 Find the converse, inverse, and the contrapositive of the implication 

 

“If today is Thursday, then I have a test today.”  

 

Solution   

 

The converse is, “If I have a test today, then today is Thursday.’ 

The inverse is, “If today is not Thursday, then I do not have a test today.” 

The contrapositive of this implication is, “If I do not have a test today, then today is not 

Thursday.” 

 

We now introduce another way to combine propositions. 

 

Definition 6 Let p and q be propositions. The biconditional p q is the proposition that 

is true when p and q have the same truth values and is false otherwise.  

 

Observe that the biconditional p q is true precisely when both the implications p→q 

and q →p are true. Because of this, the terminology 

 

“p if and only if q” 

 

is used for this biconditional. Other common ways of expressing the proposition p q 

are: “p is necessary and sufficient for q” and “if p then q, and conversely.” 

 

 

. 
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Logic and Bit Operations  

 

Computers represent information using bits. A bit has two possible values, namely, 0 

(zero) and 1 (one). Bit comes from binary digit, since zeros and ones are the digits used 

in binary representations of numbers. A bit can be used to represent a truth value, since 

there are two truth values, namely true and false. As is customarily done, we will use a 1 

bit to represent true and a 0 bit to represent false. That is, 1 represents T (true), 0 

represents F (false).  

 

Computer bit operations correspond to the logical connectives. By replacing true by a 

one and false by a zero in the truth tables for the operators.  We will also use the notation 

OR, AND, and XOR for the operators  and,, .  

 

Information is often represented using bit strings, which are sequences of zeros and 

ones. When this is done, operations on the bit strings can be used to manipulate this 

information.  

 

Definition 7 A bit string is a sequence of zero or more bits. The length of this string is 

the number of bits in the string.  

 

Listed below is how the bit operations are defined. 

 

01 1011 0110 

11 0001 1101 

11 1011 1111  bitwise OR 

 

01 1011 0110 

11 0001 1101 

01 0001 0100   bitwise AND 

 

01 1011 0110 

11 0001 1101 

10 1010 1011  bitwise XOR 
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Activity 1 

 
1. Which of the following sentences are propositions? What are the truth values of 

those that are propositions? 

(a) Dakar is the capital of Senegal.   (b) 2 + 3 = 5.        (c) 5 + 7 = 10. 
 

2. What is the negation of each of the following propositions? 

(a) Today is Thursday. 

(b) 2 + 1 = 3. 

(c) During the rainy season it is hot and sunny. 
 

3.  Let p and q be the propositions  

p: I bought a car this week. 

q: I went to the Mosque on Friday. 
  

Express each of the following propositions as a regular sentence.  

(a) ~p  (b) p q (c) p→q (d) p q 
 

4. Let p and q be the propositions 

p: It is above 30˚C. 

q: It is raining. 
 

Write the following propositions using p and q and logical connectives. 

(a) It is above 30˚C and raining.  

(b) It is above 30˚C but not raining. 

(c) It is not above 30˚C and it is not raining.  
 

5. Let p, q and r  be the propositions 

p: You get an A on the final exam. 

q: You do every activity in this book. 

r: You get an A in this class.  
 

Write the following propositions using p, q and r and logical connectives.  

(a) You get an A on the final, you do every activity in this book, and you get an A 

in this class. 

(b) Getting an A on the final and doing every activity in this book is sufficient for 

getting an A in this class.  

(c) You will get an A in this class if and only if you either do every activity in this 

book or you get an A on the final.  
 

6. Determine whether each of the following implications is true or false. 

(a) If 1 + 1 = 2, then 2 + 2 = 5. 

(b) If 1 + 1 = 3, then 2 + 2 = 4. 

(c) If 1 + 1 = 3, then 2 + 2 + 5. 

(d) If 2 + 2 = 4, then 1 + 2 = 3.  
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Activity 1  
(Continued) 

 

7. For each of the following sentences, determine whether an inclusive or or an 

exclusive or is intended.  

(a) Being age 18 or a parent is required. 

(b) Lunch includes soup or salad. 

(c) To enter the country you need a passport or a national card. 

 

8. Write each of the following statements in the form “if p then q” in sentence form.  

(Hint: Refer to the list of ways to express implications listed in this section). 

 

(a) I will remember to send you the address only if you send me an email 

message. 

(b) To be a citizen of this country, it is sufficient that you were born in the United 

States. 

(c) If you keep your textbook, it will be a useful reference in your future courses.  

 

9. Write each of the following propositions in the form “p if and only if q” in 

sentence form. 

(a) If it is hot outside you buy an ice cream cone, and if you buy an ice cream 

cone it is hot outside. 

(b) For you to win the contest it is necessary and sufficient that you have the only 

winning ticket. 

(c) You get promoted only if you have connections, and you have connections 

only if you get promoted.  

 

10. Write each of the following propositions in the form “p if and only if q” as 

sentences. 

(a) For you to get an A in this course, it is necessary and sufficient that you learn 

how to solve all activity problems.  

(b) If you read the newspaper every day, you will be informed, and conversely. 

(c) It rains if it is a weekend day, and it is a weekend day if it rains. 
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Activity 2 

 
1. State the converse, inverse, and contrapositive of each of the following 

implications. 

(a) If it rains today, I will swim tomorrow. 

(b) I come to class whenever there is going to be an exam. 

(c) A positive integer is a prime only if it has not divisors other than itself. 

 

2. State the converse, inverse, and contrapositive of each of the following 

implications. 

(a) If it snows tonight, then I will stay at home. 

(b) I go to the beach whenever it is a sunny summer day. 

(c) When I stay up late, it is necessary that I sleep until noon. 

 

3. Each inhabitant of a remote village always tells the truth or always lies. A villager 

will only give a “Yes” or a “No” response to a question a tourist asks. Suppose 

you are a tourist visiting this area and come to a fork in the road. One branch 

leads to the ruins you want to visit; the other branch leads deep into the jungle. A 

villager is standing at the fork in the road. What one question can you ask the 

villager to determine which branch to take? 

 

4. Find the bitwise OR, bitwise AND, and bitwise XOR of each of the following pairs 

of bit strings. 

 

(a) 101 1110, 010 0001 

(b) 1111 0000, 1010 1010 

 

5. Evaluate each of the following expressions.  

(a) 1 1000   (0 1011   1 1011) 

(b) (0 1111   1 0101)   0 1000) 
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Theme IV: Logic and Mathematical Reasoning 

 

Lesson 2: Truth Tables 

 

 

 
 

 

 

As we stated in Lesson 1, a proposition is a statement that is either true or false, but not 

both. The truth value of statements consisting of several propositions, can be determined 

very easily by truth tables. In this lesson we introduce the readers to truth tables. We 

begin with the basic truth tables and continue to study those that are more complex.  

 

A truth table displays the relationships between the truth values of propositions. Truth 

tables are especially valuable in the determination of the truth values of propositions 

constructed from simpler propositions. Table 1 displays all possible truth values of a 

proposition and the corresponding truth values of its negation.  

 

The negation of a proposition can also be considered the result of the operation of the 

negation operator on a proposition. The negation operator constructs a new proposition 

from a single existing proposition.  

 
TABLE 1 The Truth Table for the 

Negation of a Proposition  

p ~p 

T 

F 

T 

F 

 

This is the simplest of the basic truth tables. It illustrates what each of the truth tables will 

actually display: all of the possible true (T), false (F) possibilities with the propositions 

under consideration and the logical connective(s) under consideration.  

We now present six (6) additional basic truth tables. 

 

Table 2 is the truth table for the conjunction of two propositions.  

Table 3 is the truth table for the disjunction of two propositions.  
TABLE 2 The Truth Table for 

the Conjunction of Two 

Propositions. 

p    q p   q 

T    T 

T    F 

F    T 

F    F 

T 

F 

F 

F 

 

TABLE 3 The Truth Table for 

the Disjunction of Two 

Propositions. 

p    q p   q 

T    T 

T    F 

F    T 

F    F 

T 

T 

T 

F 

 

        

      Do You Know? 
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Truth Tables 
 

Table 4 is the truth table for the exclusive or of two propositions. 

Table 5 is the truth table for the implication of p →q. 

  

 

 

 

 

 

 

 

 

 

 
Table 6 is the truth table for the biconditional pq. 

Table 7 is the table for the bit operators OR, AND, and XOR.  

 

 

 

 

 

 

 

 

 

 

 

 

One should note that the first seven truth tables have been provided for two propositions 

only. How do the truth tables change if one considers three (3) or more simple 

propositions? 

First observe carefully the truth table involving three (3) propositions.  

TABLE 8 Truth Values for p )( rq  , Involving Three (3) Propositions.  

p q r q r p )( rq   

T T T T T 

T T F T T 

T F T T T 

T F F F F 

F T T T F 

F T F T F 

F F T T F 

F F F F F 

 

 

TABLE 6 The Truth Table for 

Biconditional  pq. 

p    q p  q 

T    T 

T    F 

F    T 

F    F 

F 

F 

F 

T 

TABLE 7 The Truth Table for the Bit 

Operators OR, AND, and XOR.  

x y x y x y x y 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

1 

0 

0 

0 

       1 

0 

1 

1 

0 

TABLE 4 The Truth Table for 

the Exclusive or of Two 

Propositions. 

p    q p   q 

T    T 

T    F 

F    T 

F    F 

F 

T 

T 

F 

 

TABLE 5  The Truth Table for 

the Implication of p →  q. 

p    q p →  q 

T    T 

T    F 

F    T 

F    F 

T 

F 

T 

T 
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Observe that the tables involving two simple propositions had four rows of truth values 

and Table 8 which involves three simple propositions has eight rows of truth values. How 

many rows of truth values do you believe that a table involving four different simple 

propositions would contain? (Hint: 2 propositions, 22 = 4 rows; 3 propositions, 32 = 8 

rows; n propositions, 2n rows.) Truth tables are valuable for helping one to learn the truth 

value of compound statements. Additionally, truth tables are very valuable for helping 

one to determine whether or not two compound statements are logically equivalent (have 

identical truth values). Truth tables are also very valuable for helping one to learn 

whether or not to compound proposition is a contradiction (all truth values are F) of a 

tautology (all truth values are T). We now present examples of such propositions.  

 

Table 9 illustrates that ~p q and p q→ are logically equivalent. 

Table 10 illustrates that p )( rq  and )()( rpqp  are logically equivalent. 

 

TABLE 9             ~ qp  and qp → are logically equivalent. 

p    q ~p ~p q p→q 

T    T 

T    F 

F    T 

F    F 

F 

F 

T 

T 

T 

F 

T 

T 

T 

F 

T 

T 

 

 

 

 

 

 

 

 

 

 

 

 
Table 11 illustrates both a contradiction and a tautology.  

 

TABLE 11         Both a contradiction and a tautology.  

p ~p p ~p p ~p 

T 

F 

F 

T 

T 

T 

F 

F 

 

 

 

 

TABLE 10             p )( rq  and )()( rpqp  are logically equivalent. 

p  q  r q r p (q r) p q p r (p q) (p r) 

T  T  T 

T  T  F 

T  F  T 

T  F  F 

F  T  T 

F  T  F 

F  F  T 

F  F  F 

T 

F 

F 

F 

T 

F 

F 

F 

T 

T 

T 

T 

T 

F 

F 

F 

T 

T 

T 

T 

T 

T 

F 

F 

T 

T 

T 

T 

T 

F 

T 

F 

T 

T 

T 

T 

T 

F 

F 

F 
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Activity 1 

 
1. Construct a truth table for  

(a) p  ~p   (b) p   ~p  

2. Construct a truth table for  

(a) (p   ~q)→q  (b) (p  ~q) →  (p   q) 

3. Construct a truth table for  

(a) (p→q) →(q→p)  (b) (p→q) (~q→~p) 

4. Construct a truth table for  

(a) p ~q   (b) ~p   ~q 

5. Construct a truth table for  

(a) (p q)   (p ~q)  (b) (p + q)   (p  ~q) 

6. Construct a truth table for  

(a) (p→q)  (~p →q)  (b)  (p→q)   (~p →q) 

7. Construct a truth table for 

(a) ~p   ~q   (b) ~[p   (~p   q) 

What comments would you make about (a) and (b)? 

8. Construct a truth table for 

[(~p   q)   p] →  q   

9. Construct a truth table for  

(p→q)   (p ~q) 

10. Compare and contrast the truth tables in Problems 8 and 9.  

What are the special names of each? In Problems 1 – 9, do you observe any 

compound propositions that were logically equivalent, a tautology or a 

contradiction; if yes, identify.  
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Activity 2 

 
1. Construct a truth table for   

(a) (p   q)   r  (b) (p   q)   r 

2. Construct a truth table for 

(a) (p   q)   r  (b) (p   q)   r 

3. Construct a truth table for  

[~p   (p   q)] →  q 

What is the special name for this compound statement? 

4. Evaluate the following expression 

(01111   10101)   010000 

5. Evaluate  

(01010   11011)   01000 
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Theme IV: Logic and Mathematical Reasoning 

 

Lesson 3: Open statements, Quantifiers and Quantified Statements 

 

 

 

 

 

 
Statements involving variables such as “x > 5 , x=y  + 7  and  x+ y = n are frequently 

found In mathematical discussions and reasoning. These statements are neither true nor 

false when the values of the variables are not specified. They are conditional statements 

that only become propositions when the values of the variables are specified. Often we 

write these conditional statements with say a variable x, as p(x).  

 

Example    p(x) :  x> 5 

 

Quantified statements are statements involving variables where we know the values of 

the variables and can evaluate whether the statements are true or false.  

 

Example  

x(x):   x> 2 is odd, where x is a prime. 

 

Once conditional statements with variables become quantified statements where the 

value(s) of the variable is known, they become propositions and can be evaluated as true 

or false. When writing open statements, we often use quantifiers. In this lesson we will 

discuss two types of quantifiers: universal and existential. 

 

Universal Quantifiers 

 

The words all, every, and each are called universal quantifiers. When these words are 

added to open sentences, they change them to statements that are true or false. Open 

statements involving quantifiers are called quantified statements. 

 

Examples of Quantified statements: 

All men have hair on their heads. 

Every truck uses diesel fuel. 

For each real number x,  x+ 7 = 7 +x. 

 

 

 

 

 

 

 

 

       Do You Know? 
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Open statements, Quantifiers and Quantified Statements 
 

Statements written with universal quantifiers have the property that they can usually be 

written as an implication (conditional statement). 

 

If a person is a man, then he has hair on his head. 

If a vehicle is a truck, then it uses diesel fuel. 

If a number is real, then x + 7 = 7 + x. 

 

Existential Quantifiers 

 

There are other quantified statements that are intended to indicate the existence of at least 

one case in which the statement is true. Such statements generally involve one of the 

following existential qualifiers: some, there exist or exists at least one. 

 

Example S 

Some men have no hair on their heads. 

There exist students who study very hard. 

There exists at least one student who does not attend school on a regular basis. 

 

Negations of Quantified Statements 
 

To be the negation of a quantified statement, the newly formulated statement must have 

truth values that are the opposite of the truth values of the original statement in 

every possible situation. 

 

Statement Negation 

All p are q. Some p are not q. 

Some p are  q. No p is q. 

All p are not q. 

Some p are not q. All p are q. 

No p is q. Some p are q. 

 

Example 

  

Write the negation of each statement. 

(a) Some girls have red hair. (At least one girl has red hair.) 

(b) All apples are yellow. 

(c) No physician is bald-headed. 

(d) Some fishermen do not work hard. (At least one fisherman does not work hard.) 

Solution: 

(a) “No girl has red hair” or “All girls have hair that is not red.” 

(b) Some apples are not yellow. 

(c) Some physicians are bald-headed. (At least one physician is bald-headed.) 

(d) All fisherman work hard. 
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Counter Example 

 

To show that a universally quantified statement is false, one needs to find only one case 

for which the statement is false; that is, one need to identify only one counter example. 

However, in showing that an existentially quantified statement is false, you must show 

that it is false for all possibilities. Similarly, an existentially quantified statement is true if 

you can find one case for which it is true, but a universally quantified statement is true 

only if it is true for all cases. 

 

Let P(x) represent an open sentence. Then, symbolically, the universal quantifier is 

represented by  x and the existential quantifier is represented by x.  

Example  Let P(x):  “x >3.”    open sentence 

       x (for every x)    universal quantifier 

       x (there exist x)    existential quantifier 

       x P(x)     quantified universal statement 

       x P(x)     quantified existential statement 

 

Using the symbols and notations, we can summarize what we have said about quantified 

statements and the negation of quantified statements.  

 

TABLE 1      Quantifiers 

Quantified  

Statement  

When True? When False? 

      x P(x) 

      x P(x) 

P(x) is true for every x.  

There is an x for which P(x) is true.  

There is an x for which P(x) is false. 

P(x) is for every x.  

 

TABLE 1     Negating Quantifiers 

Quantified  

Negation 

Equivalent 

Statement 

When is a Negation True?  When False? 

~ x P(x) 

~ x P(x) 

 

 x ~P(x) 

 x ~ P(x) 

P(x) is false for every x.  

There is an x for which P(x) is 

false. 

 

There is an x for which P(x) is true. 

P(x) is true for every x.  
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Activity 1 

 
1. Let P(x) be the open sentence “x   7” 

What is the truth value of the following? 

(a) P(-7) (b) P(0) (c) P(7) (d) P(14) 

* P(x): “x spends more than 7 hours in class every week (where x is a student).” 

2. Using P(x) in (*), express as a written quantified statement 
 

(a)  x P(x)  (b)  x P(x) 

 

3. Using P(x) in *, express as a written quantified statement.  
 

(a)  x ~ P(x)  (b)   x ~ P(x) 

 

4. Rewrite the following quantified statement using the symbols   and  . 
 

(a) For all x, x2 = 64. (b) For some x, x2 = 64. 

**        (a) P(x): x is a whole number (c) P(x): x is an irrational number 

(b) P(x): x is a real number   (d) P(x): x is not a rational number.  

 

5. Write each open sentence in ** as a universal quantified statement, using the 

symbol   or  . 

 

6. Write each open sentence in ** as an existential quantified statement using the 

symbol   or  . 

 

7. Rewrite the following quantified statement using the symbols   and  . 

(Hint: First, write correctly the P(x) as an open statement.) 
 

(a) For some triangles, the sum of the measure of the interior angles is 180˚. 

(b) For all triangles, the sum of the measure of the interior angles is 180˚. 

 

8. For each open sentence, assign a value for x that makes the open sentence a true 

statement.  
 

(a) x + 4 = 7   (c) x2 = 16 

(b) x – 7 = 4   (d) x + 3 = 3 + x 

 

9. Use a quantifier to make each open sentence in Problem 8 into a true statement.  

 

10. Use a quantifier to make each open sentence in Problem 8 into a false statement.  
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Activity 2 

 
1. The notation  ! x P(x) denotes the proposition  

 

“There exists a unique x such that P(x) is true.” 

 

What are the truth values of the following statements? (where x is an integer) 

 

(a)  ! x(x 1) 

(b)  ! x(x2 = 1) 

(c)  ! x(x + 3 = 2x) 

(d)  ! x(x =  x + 1) 

 

2. What are the truth values of the following statements? (where x is an integer) 

(a)   ! x P(x) →    x P(x) 

(b)  x P(x) →   ! x P(x) 

(c)  ! X ~ P(x) →  ~  x P(x) 

 

3. Write out the quantified statement ! x P(x), where x consists of the integers 1, 2, 

and 3.  

 

4. Write the negation of each statement without using the expression “It is not true 

that.” 

(a) All athletes over 6 feet tall play basketball. 

(b) Some students work hard at their studies. 

(c) Some professors are not intelligent. 

(d) No man weighs more than 500 pounds. 

 

5. Write each of the expressions in Problem 4 using the symbol   and  . 
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Theme IV: Logic and Mathematical Reasoning 

 

Lesson 4: Deductive Reasoning  
 

 
 

 

 

 

Valid Arguments  

 

Consider the following two sets of statements.  

 

Argument A: 

If Salaam studies, then he will make an A.  

If Salaam makes an A, then he will make the Honor Roll. 

Salaam studies. 

 

Argument B: 

If there is a path connecting each pair of vertices in a graph, then the graph is connected. 

In graph G there is a path connecting each pair of vertices. 

 

Can you determine a conclusion that follows from the statements in Argument A? Did 

you choose the statement “Salaam makes the Honor Roll”? Were you able to deduce a 

conclusion from Argument B? Did you conclude, “Graph G is connected”? If so, then 

you are reasoning clearly. Further, you have demonstrated a skill at two of the classic 

patterns of reasoning that form the foundation of deductive reasoning.  

 

Consider the collection of statements 

 

If Salaam studies, then he will make an A. 

If Salaam makes an A, then he will make the Honor Roll. 

Salaam studies. 
 

************ 

Therefore, Salaam makes the Honor Roll. 

 

That is an example of a deductive argument. Both in mathematics and in everyday 

affairs, arguments arise in which we need to deduce a correct conclusion from a given set 

of statements. In general, an argument consists of two parts: a set of two or more 

statements called premises and a single statement called the conclusion. An argument is 

valid if the conclusion is true in every circumstance in which the conjunction of the 

premises is true. If, in some case, the conjunction of the premises is true and the 

conclusion is false, then the argument is invalid. Invalid arguments are sometimes called 

fallacies. Note that a valid argument may have a conclusion that is false if any one of the 

premises fails to be true.  

 

       Do You Know? 
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Arguments are often written symbolically by naming the statements that form the 

argument: 
 

If inflation occurs, then the price of cars increases.  p→q 

Inflation occurs.      p 

************* 

Therefore, the price of automobiles increases.  q 
 

Three dots are read as therefore.  
 

When verbal arguments are converted into symbolic form, we find that the same patterns 

often occur. For example, the pattern in the previous paragraph occurs frequently. 
 

 (p→q) p; q   or    [(p →  q]  p] →q  is a tautology. 

 

The crucial fact about a valid argument is that the truth of its conclusion follows 

necessarily or logically from the truth of its premises. It is impossible to have a valid 

argument with true premises and a false conclusion. When an argument is valid and its 

premises are true, the truth of the conclusion is said to be inferred or deduced from the 

truth of the premises. If a conclusion is not true, then it is not a valid deduction.  

 

There are basically four (4) rules of inference used in statements involving quantifiers 

where valid arguments are inferred, deduced, or constructed. These rules of inference are 

used extensively in mathematical arguments and deductive reasoning, often without 

being explicitly mentioned.  

 

Universal instantiation is the rule of inference used to conclude that P(c) is true, where c 

is a particular member of the universe of discourse, given the premise  xP(x). Universal 

instantiation is used when we conclude from the statement “All women are wise” that 

‘Lisa is wise,” where Lisa is a member of the universe of discourse of all women.  

 

Universal generalization is the rule of inference which states that  xP(x) is true, given 

the premise that P(c) is true for all elements c in the universe of discourse. Universal 

generalization is used when we show that  xP(x) is true by taking an arbitrary element c 

from the universe of discourse and showing that P(c) is true. The element c that we select 

must be an arbitrary, and not specific, element of the universe of discourse. Universal 

generalization is used implicitly in many proofs in mathematics and is seldom mentioned 

explicitly. 

 

Existential instantiation is the rule which allows us to conclude that there is an element 

c in the universe of discourse for which P(c) is true if we know that   xP(x) is true. We 

cannot select an arbitrary value of c here, but rather it must be a c for which P(c) is true. 

Usually we have no knowledge of what c is, only that it exists. Since it exists, we may 

give it a name (c) and continue our argument.  
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Existential generalization is the rule of inference which is used to conclude that   xP(x) 

is true when a particular element c with P(c) true is known. That is, if we know one 

element c in the universe of discourse for which P(c) is true, then we know that   xP(x) 

is true.  

  
We summarize these rules of inference in Table A. 

 

TABLE A                      Rules of Inference for Quantified Statements.  
                             U is the Universe of Discourse, where x belongs.  

Rule of Inference Name 

UccP

xxP





)(

)(
 

Universal instantiation 

)(

)(

xxP

UcP



c
 

Universal generalization 

Uc



)(

)(

cP

xxP
 

Existential instantiation 

)(

)(

xxP

cP



Uc
 

Existential generalization 

 
One of the fundamental uses of deductive reasoning in mathematics is that of proving 

theorems.  

 

These rules of inference are used in mathematics primarily to prove propositions. 

Different methods of proofs are used in the proving of theorems.  

 

Methods of proof 

 

Two important questions that arise in the study of mathematics are: (1) When is a 

mathematical argument correct? (2) What methods can be used to construct mathematical 

arguments? This section helps answer these questions by describing various forms of 

correct and incorrect mathematical arguments. 

 

A theorem is a statement that can be shown to be true. (Theorems are sometimes called 

propositions, facts, or results.) We demonstrate that a theorem is true with a sequence of 

statements that form an argument, called a proof. To construct proofs, methods are 

needed to derive new statements from old ones. The statements used in a proof can 

include axioms or postulates, which are underlying assumptions about mathematical 

structures, the hypotheses of the theorem to be proved, and previously proved theorems. 

The rules of inference, which are the means used to draw conclusions from other 

assertions, tie together the steps of a proof.  
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The terms lemma and corollary are used in the proof of other theorems. A lemma (plural 

lemmas or lemmata) is a simple theorem used in the proof of other theorems. 

Complicated proofs are usually easier to understand when they are proved using a series 

of lemmas, where each lemma is proved individually. A corollary is a proposition that 

can be established directly from a theorem that has been proved. A conjecture is a 

statement whose truth value is unknown. When a proof of conjecture is found, the 

conjecture becomes a theorem. Many times conjectures are shown to be false, so they are 

not always theorems.  

 

The methods of proof discussed in this lesson are important not only because they are 

used to prove mathematical theorems, but also for their many applications of deductive 

reasoning in everyday challenges.  

 

We end this lesson by naming a number of different kinds of proofs and giving examples 

of these methods of proofs. Again, proving theorems is the most important use of 

deductive reasoning in mathematics.  

 

Direct proofs 

 

The implication p →q can be proved by showing that if p is true, then q must also be 

true. This shows that the combination p true and q false never occurs. A proof of this kind 

is called a direct proof. To carry out such a proof, assume that p is true and use the rules 

of inference and theorems already proved to show that q must also be true.  

 

Example 1 

 

Theorem “If n is an odd integer, then n2 is an odd integer.” (Give a direct proof.) 

 

Solution  

 

Assume that the hypothesis of this implication is true, namely, suppose that n is odd. 

Then n = 2k + 1, where k is an integer. It follows that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(k2 

+ 2k) + 1. Therefore, n2 is an odd integer (it is one more than twice an integer).  

 

Indirect proofs 

 

Since the implication p →q is equivalent to its contrapositive, ~q →  ~p, the implication 

p →q can be proved by showing that its contrapostive, ~q →  ~p, is true. This related 

implication is usually proved directly, but any proof technique can be used. An argument 

of this type is called an indirect proof.  
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Example 2 

 

Theorem “If 3n + 2 is odd, then n is odd.” (Give an indirect proof.) 

 

Solution  

 

Assume that the conclusion of this implication is false; namely, assume that n is even. 

Then n = 2k for some integer k. It follows that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1), so 

3n + 2 is even (since it is a multiple of 2) and therefore is not odd.  Because the negation 

of the conclusion of the implication implies that the hypothesis in false, the original 

implication is true. 

 

Proofs by contradiction 

 

Proofs by contradiction is another approach that we can use when neither a direct nor an 

indirect proof succeeds.  

 

Suppose that a contradiction q can be found so that ~p →  q is true, that is ~p→F is true. 

Then the proposition ~p must be false. Consequently, p must be true. This technique can 

be used when a contradiction, such as r  ~r, can be found so that it is possible to show 

that the implication ~p →  (r   ~r) is true. An argument of this type is called proof by 

contradiction.  

 

Example 3 

 

Theorem “If 3n + 2 is odd, then n is odd.” 

 

Solution  

 

We assume that 3n + 2 is odd and that n is not odd, so that n is even. Following similar 

steps as in the indirect proof, we can show that if n is even, then 3n + 2 is even. This 

contradicts the assumption that 3n + 2 is odd, completing the proof.  

 

There are several other methods of proofs, such as  

- Proof by cases - a proof of an implication where the hypothesis is a disjunction of  

                 propositions that shows that each hypothesis separately implies the conclusion;  

- Vacuous proof – a proof that the implication p→q is true based on the fact that p       

      is false 

- Trivial proof – a proof that the implication p→q is true based on the fact that q  

      is true 

 

and others. However, the three (3) that we have given in this lesson, with examples, are 

the most frequently used.  

 



 48 

Deductive Reasoning 
 

Activity 1 

 
Part I: True or False (Explain your answer.) 

 

____ 1. Every proposition is a theorem. 

____ 2. Every theorem is a proposition. 

____ 3. Every theorem is a lemma. 

____ 4. Every lemma is a theorem. 

____ 5. Every contingency is always false. 

____ 6. All the truth values of a tautology are false. 

____ 7. All the truth values of a contradiction are true. 

____ 8. A fallacy is a method of proof. 

____ 9. A counterexample is a method of proof. 

____ 10. There are only three ways to prove a theorem (1) direct, (2) indirect, (3) by 

contradiction. 

 

Part II: Formulate the arguments of Exercises 1 – 5, symbolically, and determine whether 

each is valid. Let 

 

 p: I study hard.  Q: I get A’s  r: I get rich 

 

1. If I study hard, then I get A’s. 

I studied hard. 

 I got A’s. 

 

2. If I study hard, then I get A’s. 

If I do not get rich, then I do not get A’s. 

 I got rich. 

 

3. I study hard if and only if I get rich. 

I got rich. 

 I studied hard. 

 

4. If I study hard or I get rich, then I get A’s. 

I got A’s. 

If I do not study hard, then I get rich. 

 

5. If I study hard, then I get A’s or I get rich. 

I do not get A’s and I do not get rich.  

I did not study hard.  
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Activity 2 
 

Prove these theorems by direct proof, indirect proof, or by contradiction.  

 

Theorem 1 If x and y are even integers, then x + y is even. 

 

Theorem 2 If x is an odd integer and y is an even integer, then the product xy is 

an even integer.  

 

Theorem 3 If x is an odd integer and y is an odd integer, then x + y is an even 

integer. 

 

Theorem 4 If x is an even integer an y is an odd integer, then x + y is an odd 

integer. 

 

Theorem 5 For an integer n, n2 is even, then n is even.  

 

1. Prove theorem 1. 

 

2. Prove theorem 2. 

 

3. Prove theorem 3. 

 

4. Prove theorem 4. 

 

5. Prove theorem 5. 

 

6.  –     10.  

Create your own problems or theorems that you would like to solve. 
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Lesson 5: Inductive Reasoning 
 

 

 

 

 

 

 

Inductive reasoning is essentially the opposite of deductive reasoning. It involves trying 

to create general principles by starting with many specific instances. For example, in 

inductive geometry you might measure the interior angles of a group of randomly drawn 

triangles. When you discover that the sum of three angles is 180˚ regardless of the 

triangle, you would be tempted to make a generalization about the sum of the interior 

angles of a triangle. Bringing forward all these separate facts provides evidence in order 

to help support your general statement about the interior angles.  

 

This is the kind of reasoning used if you have gradually built up an understanding of how 

something works. Rather than starting with laws and principles and making deductions, 

most people collect relevant experience and try to construct principles from it.  

 

Inductive reasoning progresses from observations of individual cases to the development 

of a generality. Here are some general examples of inductive reasoning: 

 

Example 1 

 

A person drives down a particular road at rush hour several times and finds the traffic 

terrible each time.  Therefore, this is a good road to avoid at rush hour. 

 

Example 2 

 

Well, I’ve observed many patients receive a certain drug combination, and there never 

have been observed any problems with it. Therefore, this drug combination seems not to 

have any negative side effects.  

 

Inductive arguments are always open to question as, by definition, the conclusion is 

bigger than the evidence on which it is based. Inductive reasoning is the process of 

arriving at a conclusion based on a set of observations. In itself, it is not a valid method of 

proof. Just because a person observes a number of situations in which a pattern exists 

does not mean that the pattern is true for all situations.  

 

 

 

 

 

        

      Do You Know? 
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For example, inductive reasoning is often used in geometry and other areas of 

mathematics. One might observe that in a few given rectangles, the diagonals are 

congruent (same size). The observer could inductively reason that in all rectangles, the 

diagonals are congruent. Although we know this to be generally true, the observer has not 

proved it through his limited observations.  However, he could prove his hypothesis using 

other means and come out with a theorem (a proven statement). In this case, as in many 

others, inductive reasoning led to a suspicion, or more specifically, a hypothesis, that 

ended up being true. However, in all cases the hypothesis is not true.  

 

The power of inductive reasoning, then, does not lie in its ability to prove mathematical 

statements. In fact, inductive reasoning can never be used to provide proofs. Instead, 

inductive reasoning is valuable because it allows us to form ideas about groups of things 

in real life. In geometry, inductive reasoning helps us organize what we observe into 

succinct geometric hypotheses that we can prove using other, more reliable methods. 

Whether we know it or not, the process of inductive reasoning almost always is the way 

we form ideas about things. Once those ideas form, we can systematically determine 

(using formal proofs) whether our initial ideas were right, wrong, or somewhere in 

between. 

 

INDUCTIVE REASONING IS A BOTTOM UP PROCESS  
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Although inductive reasoning is not a method of proof, there are two ideas associated 

with inductive reasoning that are important to mathematics and other aspects of reality.  

 

A. Inductively Defined Sets (a construction technique), 

B. The Principal of Mathematical Induction (which is the foundation of proof by 

Mathematical Induction). 

These two ideas help solve real problems. There are usually two (2) parts to solving a 

problem. The first part is to make a guess at what one believes might be a solution. The 

second part is to verify that this guess is or is not correct. We will now show how these 

ideas solve problems; especially mathematically. 

 

Inductively Defined Sets  
 

When we write down an informal statement such as A = {3, 5, 7, 9, …}, most of us will 

agree that we mean the set A = {2k + 3│k N.  Another way to describe A is to observe 

that 3   A, that x A implies x + 2   A, and that the only way an element gets in A is 

by these two steps. This description of A has three ingredients: 

 

1. There is a starting element (3). 

2. There is a construction operation to build new elements from existing elements 

(addition by 2). 

3. There is a statement that no other elements are in set. 

Some Inductive Definitions 
 

This process in an example of an inductive definition of a set. The set of objects defined 

is called an inductive set. An inductive set consists of objects that are constructed, in 

some way, from objects that are already in the set. So nothing can be constructed unless 

there is at least one object in the set to start the process. Inductive sets ate important in 

computer science because the objects can be used to represent information and the 

construction rules can often be programmed. A formal definition is as follows: 

 

An inductive definition of a set S consists of three (3) steps: 

Basis:  Specify one or more elements of S. 

Induction:  Give one or more rules to construct new elements of S form existing 

elements of S.  

Closure: State that S consists exactly of the elements obtained by the basis and 

induction steps. This step is usually assumed rather than stated explicitly. 

The closure step is a very important part of the definition. Without it, there could be lots 

of sets satisfying the first two steps of an inductive definition.  
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Example 3 

 

The natural number N can be defined as an inductive set. 

 

The set of natural numbers N = {1, 2, 3…} is an inductive set. Its basis element is 0, and 

we can construct a new element from an existing one by adding the number 1. So we can 

write an inductive definition for N in the following way.  

 

Basis:  1N. 

Induction: If n   N, then n + 1N. 

 

The constructors of N are the integer 1 and the operation that adds 1 to an element of N. 

The operation of adding 1 to n is called the successor function, which we write as 
 

  succ(n) = n + 1. 
 

Using the successor function, we can rewrite the induction step in the above definition of 

N in the alternative form 
 

  If n N, then succ(n) N. 
 

So we can say that N is an inductive set with two constructors, 1 and succ. 
 

Example 4 
 

Some familiar odd numbers: A = {1, 3, 7, 15, 31, …}, can be defined as an inductive set. 

An inductive definition of A can be written as follows: 
 

Basis:  1A. 
 

Induction: If x   A, then 2x + 1   A. 
 

Example 5 
 

Fibonacci numbers can be defined as an inductive set, recursively, as follows: 
 

 fib(0) = 0, 

 fib(1) = 1, 

 fib(n) = fib(n – 2) + fib(n – 1)    if n > 1. 
 

The Principle of Mathematical Induction  
 

Let P(n) be a statement involving natural numbers. To prove that P(n) is true for all 

integers n m (for m   Z), perform the following two (2) steps: 
 

1. Prove that P(m) is true. 

2. Assume that P(k) is true for an arbitrary k  m. Then prove that P(k + 1) is true. 

The principle of mathematical induction is a technique to prove that infinitely many 

statements are true in just two steps. Quite a savings in time. Let’s look at an example. 

This proof technique is just what one needs to prove examples like the following.  
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Example 6 
 

Prove by mathematical induction    Let P(n):  1 + 3 + 5 + …+ (2n – 1) = n2 

 

Solution 
 

Consider P(n):  1 + 3 + 5 + …+ (2n – 1) = n2 

 

We must first complete the basis step; that is, we must show that P(1) is true. Then we 

must carry out the inductive step; that is, we must show the P(k + 1) is true when P(k) is 

assumed to be true. 
 

BASIS STEP:  P(1): 1 = 12 = 1; thus, P(1) is true. 

INDUCTIVE STEP: To complete the inductive step we must show that the proposition  

P(k) →P (k + 1) is true for every positive integer k. To do this, 

assume that P(k):  1 + 3 + 5 + … + (2k – 1) = k2 is true for a 

positive integer k;  
 

Now it must be shown that P(k + 1) is true, assuming that P(k) is true. We know that P(k 

+ 1) has this expression 1 + 3 + 5 + … + (2k – 1) + (2k + 1) = (k +1)2 
 

Assuming that P(k) is true, it follows that 

P(k + 1): 1 + 3 + 5 + … + (2k – 1) + (2k +1) = k2 + (2k + 1)  

                          = k2 + 2k + 1 

                          = (k + 1) (k + 1) 

                          = (k + 1)2. 
 

This shows that P(k + 1) follows from P(k). This concludes our proof by mathematical 

induction. We now use the Principle of Mathematical Induction to prove an inequality. 
 

Example 7 
 

Use mathematical induction to prove the inequality 
 

 n < 2n 

 

for all positive integers n. 
 

Solution  
 

Let P(n) be the proposition “n < 2n.” 

 

BASIS STEP:  P(1) is true, since 1 < 21 = 2. 

INDUCTIVE STEP: Assume that P(k) is true for the positive integer k. That is, assume 

that k < 2k. We need to show that P(k + 1) is true. That is, we need to so that k + 1 < 2k+1. 

Adding 1 to both sides of k < 2k, and then nothing that 1   2k, gives  
 

 k + 1 < 2k + 1   2k + 2k = 2k+1. 
 

We have shown that P(k + 1) is true, namely, that k + 1 < 2k+1, based on the assumption 

that P(k) is true. The induction step is complete. 
 

Therefore, by the principle of mathematical induction, it has been shown that n < 2n is 

true for all positive integers n.  
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Activity 1 

 
 * Define each of the following sets inductively. 

 

1. S1 = {1, 3, 5, 7, …} 

2. S2 = {0, 2, 4, 6, 8, …} 

3. S3 = {-3, -1, 1, 3, 5, …} 

4. S4 = {…, -7, -4, -1, 2, 5, 8 , …} 

5. S5 = {1, 4, 9, 16, 25, …} 

6. S6 = {1, 3, 7, 15, 31, 63, ….} 

7. S7 = AB = {2, 4, 8, 16, …}  {3, 7, 11, 15, …} 

8. Construct recursively f(n) = {0, 1, …, n) 

9. Construct recursively f(n) = {0, 4, 8, 16, …, n} 

Given f(0) = 0, f(1) = 1, f(n) = (n – 2) + (n – 1) for n > 1 

 

10. List f(1), f(2), …, f(12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 48 

Inductive Reasoning 

 

Activity 2 

 
1. Define the set S = {4, 7, 10, 13, …} {6, 9, 12, …} inductively. Please not that  

S = S  S which means that two sets have to be defined inductively: S and S 

 

2. Construct recursively f(n, k) = {0, k, 2k, 3k, …, nk} 

 

3. Construct recursively f(n, k) = {n, n + 1, n + 2, …, n + k} 

 

4. Prove by mathematical induction that  

P(n): 2 + 6 + 10 + …+ (4n – 2) = 2n2 

 

5. Show that n! < nn for n > 1 

(Use the Principle of Mathematical Induction.) 

6. -     10. 

Create five (5) problems that you wish to solve involving inductive sets or proofs 

by the Principle of Mathematical Induction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Project for the Government of Senegal – Funded by USAID’s 

African Education Initiative (AEI) 

Textbooks and Learning Materials Program (TLMP) 
 

RFA (TLMP): M/OAA/GRO-05-1592 

CA Référence: RLA-A-00-05-00084-00 

 

 

 

 

 

NOT FOR SALE 

 
 

  

 

 


